Neural networks have revolutionized the area of artificial intelligence and introduced transformative applications to almost every scientific field and industry. However, this success comes at a great price; the energy requirements for training advanced models are unsustainable. One promising way to address this pressing issue is by developing low-energy neuromorphic hardware that directly supports the algorithm's requirements. The intrinsic non-volatility, non-linearity, and memory of spintronic devices make them appealing candidates for neuromorphic devices. Here we focus on the reservoir computing paradigm, a recurrent network with a simple training algorithm suitable for computation with spintronic devices since they can provide the properties of non-linearity and memory. We review technologies and methods for developing neuromorphic spintronic devices and conclude with critical open issues to address before such devices become widely used.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
生物视觉系统的神经基础在实验上研究很具有挑战性,特别是因为相对于视觉输入,神经元活性变得越来越非线性。人工神经网络(ANN)可以为改善我们对这一复杂系统的理解提供各种目标,不仅充当硅中新假设产生的感觉皮层的预测数字双胞胎,而且还融合了生物启发的建筑主题,以逐步桥接桥梁生物和机器视觉之间的差距。该鼠标最近已成为研究视觉信息处理的流行模型系统,但是尚未确定识别鼠标视觉系统最新模型的标准化大规模基准。为了填补这一空白,我们提出了感官基准竞赛。我们从小鼠初级视觉皮层中收集了一个大规模数据集,其中包含七个小鼠的28,000多个神经元的反应,并通过数千个自然图像刺激,以及同时的行为测量,包括跑步速度,瞳孔扩张和眼动。基准挑战将基于固定测试集​​中神经元响应的预测性能对模型进行对模型,其中包括两个模型输入的轨道,仅限于刺激(感觉到)或刺激加行为(感觉符号+)。我们提供一个起始套件,以降低进入障碍的障碍,包括教程,预训练的基线模型以及带有一条线命令以进行数据加载和提交的API。我们希望将其视为定期挑战和数据发布的起点,也是衡量鼠标视觉系统及其他大规模神经系统识别模型中进度的标准工具。
translated by 谷歌翻译
深度神经网络(DNN)已经在许多领域实现了最先进的性能。然而,DNN需要高计算时间,并且人们始终期望在较低的计算中进行更好的性能。因此,我们研究人类躯体传感系统并设计神经网络(SPINANNET),以实现更高的计算准确性,计算较少。传统NNS中的隐藏层接收前一层中的输入,应用激活函数,然后将结果传送到下一个图层。在拟议的脊柱植物中,每层分为三个分裂:1)输入分割,2)中间分割,3)输出分割。每个层的输入拆分接收到输入的一部分。每个层的中间分割接收先前层的中间分离的输出和电流层的输入分割的输出。输入权重的数量明显低于传统的DNN。 SPINANNET还可以用作DNN的完全连接或分类层,并支持传统的学习和转移学习。我们在大多数DNN中观察到具有较低计算成本的显着误差。 VGG-5网络上的传统学习具有SPINALNET分类层,为QMNIST,Kuzushiji-Mnist,EMNIST(字母,数字和平衡)数据集提供了最先进的(SOTA)性能。传统学习与Imagenet预训练的初始重量和Spinalnet分类层提供了STL-10,水果360,Bird225和CALTECH-101数据集的SOTA性能。拟议的SPINANNET的脚本可按以下链接提供:https://github.com/dipuk0506/spinalnet
translated by 谷歌翻译
普通射线照相被广泛用于检测总髋关节置换(THR)植入物的机械松动。目前,X光片是由医疗专业人员手动评估的,这可能是差的,并且观察者内部可靠性和准确性较低。此外,手动检测THR植入物的机械松动需要经验丰富的临床医生,这些临床医生可能总是很容易获得,可能导致诊断延迟。在这项研究中,我们提出了一种新型的,全自动和可解释的方法,用于使用深卷积神经网络(CNN)从纯X线照片中检测THR植入物的机械松动。我们使用五倍交叉验证对40名患者进行了40名患者的CNN培训,并将其性能与大量板认证的骨科医生(AFC)进行了比较。为了提高对机器结局的信心,我们还实施了显着图,以可视化CNN在哪里进行诊断。 CNN在诊断植入物的机械松动方面优于骨科医生,其敏感性明显高于敏感性(0.94),其特异性相同(0.96)(0.96)。显着图显示,CNN着眼于临床相关的特征以进行诊断。此类CNN可用于自动放射植入物的机械松动,以补充从业者的决策过程,提高其诊断准确性,并释放它们以进行以患者为中心的护理。
translated by 谷歌翻译
Deep neural networks (DNNs) are vulnerable to a class of attacks called "backdoor attacks", which create an association between a backdoor trigger and a target label the attacker is interested in exploiting. A backdoored DNN performs well on clean test images, yet persistently predicts an attacker-defined label for any sample in the presence of the backdoor trigger. Although backdoor attacks have been extensively studied in the image domain, there are very few works that explore such attacks in the video domain, and they tend to conclude that image backdoor attacks are less effective in the video domain. In this work, we revisit the traditional backdoor threat model and incorporate additional video-related aspects to that model. We show that poisoned-label image backdoor attacks could be extended temporally in two ways, statically and dynamically, leading to highly effective attacks in the video domain. In addition, we explore natural video backdoors to highlight the seriousness of this vulnerability in the video domain. And, for the first time, we study multi-modal (audiovisual) backdoor attacks against video action recognition models, where we show that attacking a single modality is enough for achieving a high attack success rate.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
This paper presents a machine learning approach to multidimensional item response theory (MIRT), a class of latent factor models that can be used to model and predict student performance from observed assessment data. Inspired by collaborative filtering, we define a general class of models that includes many MIRT models. We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model. This model evaluation process can be optimized using batching techniques, such that even sparse large-scale data can be analyzed efficiently. We illustrate our approach with simulated and real data, including an example from a massive open online course (MOOC). The high-dimensional model fit to this large and sparse dataset does not lend itself well to traditional methods of factor interpretation. By analogy to recommender-system applications, we propose an alternative "validation" of the factor model, using auxiliary information about the popularity of items consulted during an open-book exam in the course.
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译