作者最近给出了$ n^{o(\ log \ log n)} $时间成员资格查询算法,用于在统一分布下正确学习决策树(Blanc等,2021)。此问题的先前最快算法以$ n^{o(\ log n)} $ time运行,这是Ehrenfeucht和Haussler(1989)的经典算法,这是无分配设置的经典算法。在本文中,我们强调了获得多项式时间算法的自然开放问题,讨论获得它的可能途径以及我们认为具有独立利益的状态中级里程碑。
translated by 谷歌翻译
我们提供了$ n ^ {o(\ log \ log n)} $ - 时间成员资格查询算法,用于在统一分布下统一分发的统一分布\ {\ pm 1 \} ^ n $。即使在可实现的设置中,上一个最快的运行时也是$ n ^ {o(\ log n)} $,这是ehrenfeucht和haussler的经典算法的结果。我们的算法与学习决策树的实用启发式分享了相似性,我们增加了额外的想法,以避免已知的这些启发式措施。为了分析我们的算法,我们证明了决策树的新结构结果,增强了O'Donnell,Saks,Schramm和Servedio的定理。虽然OSS定理表明每个决策树都有一个有影响力的变量,但我们展示了每个决策树如何“修剪”,以便产生的树中的每个变量都是有影响力的。
translated by 谷歌翻译
本文介绍了一个新颖的自我监督的细粒度对话评估框架(自我评估)。核心思想是建模转弯质量与整个对话质量之间的相关性。我们首先提出了一种新型的自动数据构建方法,该方法可以自动为任意对话数据分配细粒度的分数。然后,我们使用多层对比度学习模式训练\ textbf {self eval},有助于区分不同的分数水平。多个基准测试的实验结果表明,自我与人类评估高度一致,并且比最先进的模型更好。我们对本文的实验进行了详细的分析。我们的代码和数据将在GitHub上发布。
translated by 谷歌翻译
预测道路代理的未来行为是自动驾驶的关键任务。尽管现有模型在预测边际代理的未来行为方面取得了巨大的成功,但有效预测多种代理的一致的关节行为仍然是一个挑战。最近,提出了占用场的占用场表示,以通过占用网格和流量的结合来代表公路代理的联合未来状态,从而支持有效且一致的关节预测。在这项工作中,我们提出了一个新颖的占用流场预测因子,以产生准确的占用和流动预测,通过结合图像编码器的功能,该图像编码器从栅格化的流量图像中学习特征和矢量编码器,以捕获连续代理轨迹和地图状态的信息。在生成最终预测之前,这两个编码的功能由多个注意模块融合。我们的简单但有效的模型排在Waymo Open数据集占用和流预测挑战中,并在封闭的占用和流动预测任务中取得了最佳性能。
translated by 谷歌翻译
视频识别是由端到端学习范式主导的 - 首先初始化具有预审预周化图像模型的视频识别模型,然后对视频进行端到端培训。这使视频网络能够受益于验证的图像模型。但是,这需要大量的计算和内存资源,以便在视频上进行填充以及直接使用预审计的图像功能的替代方案,而无需填充图像骨架会导致结果不足。幸运的是,在对比视力语言预训练(剪辑)方面的最新进展为视觉识别任务的新途径铺平了道路。这些模型在大型开放式图像文本对数据上进行了预测,以丰富的语义学习强大的视觉表示。在本文中,我们介绍了有效的视频学习(EVL) - 一种有效的框架,用于直接训练具有冷冻剪辑功能的高质量视频识别模型。具体来说,我们采用轻型变压器解码器并学习查询令牌,从剪辑图像编码器中动态收集帧级空间特征。此外,我们在每个解码器层中采用局部时间模块,以发现相邻帧及其注意力图的时间线索。我们表明,尽管有效地使用冷冻的骨干训练,但我们的模型在各种视频识别数据集上学习了高质量的视频表示。代码可在https://github.com/opengvlab/feld-video-rencognition上找到。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
了解脑损伤的强度特征是定义神经系统研究和预测疾病负担和结局的基于图像的生物标志物的关键。在这项工作中,我们提出了一种基于前景的新型生成方法,用于对局部病变特征进行建模,该方法既可以在健康图像上产生合成病变,又可以从病理图像中综合受试者特异性的伪健康图像。此外,该方法可以用作数据增强模块,以生成用于训练大脑图像分割网络的合成图像。在磁共振成像(MRI)上获得的多发性硬化症(MS)脑图像的实验表明,所提出的方法可以生成高度逼真的伪健康和伪病理学脑图像。与传统的数据增强方法以及最近的病变感知数据增强技术Carvemix相比,使用合成图像进行数据扩展可改善大脑图像分割的性能。该代码将在https://github.com/dogabasaran/lesion-synthesis中发布。
translated by 谷歌翻译
本文解决了新型类别发现(NCD)的问题,该问题旨在区分大规模图像集中的未知类别。 NCD任务由于与现实世界情景的亲密关系而具有挑战性,我们只遇到了一些部分类和图像。与NCD上的其他作品不同,我们利用原型强调类别歧视的重要性,并减轻缺少新颖阶级注释的问题。具体而言,我们提出了一种新型的适应性原型学习方法,该方法由两个主要阶段组成:原型表示学习和原型自我训练。在第一阶段,我们获得了一个可靠的特征提取器,该功能提取器可以为所有具有基础和新颖类别的图像提供。该功能提取器的实例和类别歧视能力通过自我监督的学习和适应性原型来提高。在第二阶段,我们再次利用原型来整理离线伪标签,并训练类别聚类的最终参数分类器。我们对四个基准数据集进行了广泛的实验,并证明了该方法具有最先进的性能的有效性和鲁棒性。
translated by 谷歌翻译
为了减少人际关系提取(RE)任务的注释,提出了遥远的监督方法,同时却在低性能方面挣扎。在这项工作中,我们提出了一个新颖的DSRE-NLI框架,该框架既考虑了现有知识库的遥远监督,又考虑了对其他任务的预读语言模型的间接监督。 DSRE-NLI通过半自动关系语言(SARV)机制为现成的自然语言推理(NLI)发动机充满电,以提供间接的监督并进一步巩固远处注释以使多型分类重新模型受益。基于NLI的间接监督仅获取一个从人类的关系模板作为每个关系的语义通用模板,然后模板集由高质量的文本模式富集,从遥远的注释的语料库中自动开采。通过两种简单有效的数据整合策略,培训数据的质量得到了显着提高。广泛的实验表明,所提出的框架可显着改善远距离监督的RE基准数据集上的SOTA性能(最高为F1的7.73%)。
translated by 谷歌翻译
合作感允许连接的自动驾驶汽车(CAV)与附近的其他骑士相互作用,以增强对周围物体的感知以提高安全性和可靠性。它可以弥补常规车辆感知的局限性,例如盲点,低分辨率和天气影响。合作感知中间融合方法的有效特征融合模型可以改善特征选择和信息聚集,以进一步提高感知精度。我们建议具有可训练的特征选择模块的自适应特征融合模型。我们提出的模型之一是通过空间自适应特征融合(S-Adafusion)在OPV2V数据集的两个子集上的所有其他最先进的模型:默认的Carla Towns用于车辆检测和用于域适应的Culver City。此外,先前的研究仅测试了合作感的车辆检测。但是,行人在交通事故中更有可能受到重伤。我们使用CODD数据集评估了车辆和行人检测的合作感的性能。与CODD数据集中的车辆和行人检测相比,我们的架构达到的平均精度(AP)高。实验表明,与常规感知过程相比,合作感也可以提高行人检测准确性。
translated by 谷歌翻译