In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
我们对产品审查进行建模,以产生比较响应,这些响应包括有关产品的正面和负面经验。具体而言,我们产生了给定阳性和消极意见的单句,比较响应。我们从对产品的对比意见以及对预训练的BERT模型的性能分析以生成此类片段的性能分析,为这项比较摘要生成的任务贡献了第一个数据集。
translated by 谷歌翻译
已经开发了许多Visio语言(V + L)表示学习方法,但现有数据集不会评估它们在统一空间中代表视觉和语言概念的程度。灵感来自于奇妙的转移和精神语言学文献,我们提出了一个新的V + L型号的评价设置:零射频跨模型转移。现有的V + L基准也经常在整个数据集上报告全局精度分数,渲染难以确定模型失败并成功的具体推理任务。要解决此问题并启用对跨模型传输的评估,我们存在TRAVLR,包括四个V + L推理任务的合成数据集。每个示例对场景进行了双倍,使得在训练/测试期间可以丢弃无论是没有相关信息的丢失。 Travlr的培训和测试分布也沿任务相关维度约束,从而可以评估分配外概括。我们评估了四个最先进的V + L型号,发现它们在从同一模态的测试集上表现良好,但所有型号都无法转移交叉模态,并且成功有限,容纳一个模态的添加或删除。在与事先工作的对齐中,我们还发现这些模型需要大量数据来学习简单的空间关系。我们将Travlr释放为研究界的开放挑战。
translated by 谷歌翻译
在宣传,新闻和社交媒体中的虚假,不准确和误导信息中,现实世界的问题应答(QA)系统面临综合和推理相互矛盾的挑战,以获得正确答案的挑战。这种紧迫性导致需要使QA系统对错误信息的强大,这是一个先前未开发的主题。我们通过调查与实际和虚假信息混合的矛盾的情况下,通过调查QA模型的行为来研究对QA模型的错误信息的风险。我们为此问题创建了第一个大规模数据集,即对QA,其中包含超过10K的人写和模型生成的矛盾的上下文。实验表明,QA模型易受误导的背景下的攻击。为了防御这种威胁,我们建立一个错误信息感知的QA系统作为一个反措施,可以以联合方式整合问题应答和错误信息检测。
translated by 谷歌翻译
Accompanying rapid industrialization, humans are suffering from serious air pollution problems. The demand for air quality prediction is becoming more and more important to the government's policy-making and people's daily life. In this paper, We propose GreenEyes -- a deep neural network model, which consists of a WaveNet-based backbone block for learning representations of sequences and an LSTM with a Temporal Attention module for capturing the hidden interactions between features of multi-channel inputs. To evaluate the effectiveness of our proposed method, we carry out several experiments including an ablation study on our collected and preprocessed air quality data near HKUST. The experimental results show our model can effectively predict the air quality level of the next timestamp given any segment of the air quality data from the data set. We have also released our standalone dataset at https://github.com/AI-Huang/IAQI_Dataset The model and code for this paper are publicly available at https://github.com/AI-Huang/AirEvaluation
translated by 谷歌翻译
Conditional variational models, using either continuous or discrete latent variables, are powerful for open-domain dialogue response generation. However, previous works show that continuous latent variables tend to reduce the coherence of generated responses. In this paper, we also found that discrete latent variables have difficulty capturing more diverse expressions. To tackle these problems, we combine the merits of both continuous and discrete latent variables and propose a Hybrid Latent Variable (HLV) method. Specifically, HLV constrains the global semantics of responses through discrete latent variables and enriches responses with continuous latent variables. Thus, we diversify the generated responses while maintaining relevance and coherence. In addition, we propose Conditional Hybrid Variational Transformer (CHVT) to construct and to utilize HLV with transformers for dialogue generation. Through fine-grained symbolic-level semantic information and additive Gaussian mixing, we construct the distribution of continuous variables, prompting the generation of diverse expressions. Meanwhile, to maintain the relevance and coherence, the discrete latent variable is optimized by self-separation training. Experimental results on two dialogue generation datasets (DailyDialog and Opensubtitles) show that CHVT is superior to traditional transformer-based variational mechanism w.r.t. diversity, relevance and coherence metrics. Moreover, we also demonstrate the benefit of applying HLV to fine-tuning two pre-trained dialogue models (PLATO and BART-base).
translated by 谷歌翻译
Complex dialogue mappings (CDM), including one-to-many and many-to-one mappings, tend to make dialogue models generate incoherent or dull responses, and modeling these mappings remains a huge challenge for neural dialogue systems. To alleviate these problems, methods like introducing external information, reconstructing the optimization function, and manipulating data samples are proposed, while they primarily focus on avoiding training with CDM, inevitably weakening the model's ability of understanding CDM in human conversations and limiting further improvements in model performance. This paper proposes a Sentence Semantic \textbf{Seg}mentation guided \textbf{C}onditional \textbf{V}ariational \textbf{A}uto-\textbf{E}ncoder (SegCVAE) method which can model and take advantages of the CDM data. Specifically, to tackle the incoherent problem caused by one-to-many, SegCVAE uses response-related prominent semantics to constrained the latent variable. To mitigate the non-diverse problem brought by many-to-one, SegCVAE segments multiple prominent semantics to enrich the latent variables. Three novel components, Internal Separation, External Guidance, and Semantic Norms, are proposed to achieve SegCVAE. On dialogue generation tasks, both the automatic and human evaluation results show that SegCVAE achieves new state-of-the-art performance.
translated by 谷歌翻译
In this work, we explore combining automatic hyperparameter tuning and optimization for federated learning (FL) in an online, one-shot procedure. We apply a principled approach on a method for adaptive client learning rate, number of local steps, and batch size. In our federated learning applications, our primary motivations are minimizing communication budget as well as local computational resources in the training pipeline. Conventionally, hyperparameter tuning methods involve at least some degree of trial-and-error, which is known to be sample inefficient. In order to address our motivations, we propose FATHOM (Federated AuTomatic Hyperparameter OptiMization) as a one-shot online procedure. We investigate the challenges and solutions of deriving analytical gradients with respect to the hyperparameters of interest. Our approach is inspired by the fact that, with the exception of local data, we have full knowledge of all components involved in our training process, and this fact can be exploited in our algorithm impactfully. We show that FATHOM is more communication efficient than Federated Averaging (FedAvg) with optimized, static valued hyperparameters, and is also more computationally efficient overall. As a communication efficient, one-shot online procedure, FATHOM solves the bottleneck of costly communication and limited local computation, by eliminating a potentially wasteful tuning process, and by optimizing the hyperparamters adaptively throughout the training procedure without trial-and-error. We show our numerical results through extensive empirical experiments with the Federated EMNIST-62 (FEMNIST) and Federated Stack Overflow (FSO) datasets, using FedJAX as our baseline framework.
translated by 谷歌翻译
Recent methods for deep metric learning have been focusing on designing different contrastive loss functions between positive and negative pairs of samples so that the learned feature embedding is able to pull positive samples of the same class closer and push negative samples from different classes away from each other. In this work, we recognize that there is a significant semantic gap between features at the intermediate feature layer and class labels at the final output layer. To bridge this gap, we develop a contrastive Bayesian analysis to characterize and model the posterior probabilities of image labels conditioned by their features similarity in a contrastive learning setting. This contrastive Bayesian analysis leads to a new loss function for deep metric learning. To improve the generalization capability of the proposed method onto new classes, we further extend the contrastive Bayesian loss with a metric variance constraint. Our experimental results and ablation studies demonstrate that the proposed contrastive Bayesian metric learning method significantly improves the performance of deep metric learning in both supervised and pseudo-supervised scenarios, outperforming existing methods by a large margin.
translated by 谷歌翻译
基于自动机的方法使机器人能够执行各种复杂的任务。但是,大多数现有的基于自动机的算法都高度依赖于已考虑任务的状态的手动定制表示,从而限制了其在深度强化学习算法中的适用性。为了解决这个问题,通过将变压器纳入强化学习中,我们开发了一个双转化器引导的时间逻辑框架(T2TL),该逻辑框架(T2TL)两次利用变压器的结构特征,即首先通过变压器模块编码LTL指令,以有效地理解对有效的理解培训期间的任务说明,然后再次通过变压器编码上下文变量,以改善任务性能。特别是,LTL指令由Co-Safe LTL指定。作为具有语义的改写操作,LTL的进展被利用以将复杂的任务分解为可学习的子目标,这不仅将非马克维亚奖励决策转换为马尔可夫的奖励决策过程,而且通过同时学习多个子 - 学习效率,提高了采样效率。任务。进一步纳入了环境不足的LTL预训练方案,以促进变压器模块的学习,从而改善LTL的表示。模拟和实验结果证明了T2TL框架的有效性。
translated by 谷歌翻译