We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.
translated by 谷歌翻译
语言模型预训练的最新进展利用大规模数据集创建多语言模型。但是,这些数据集中大多遗漏了低资源语言。这主要是因为网络上没有很好地表示口语,因此被排除在用于创建数据集的大规模爬网中。此外,这些模型的下游用户仅限于最初选择用于预训练的语言的选择。这项工作调查了如何最佳利用现有的预培训模型来为16种非洲语言创建低资源翻译系统。我们关注两个问题:1)如何将预训练的模型用于初始预培训中未包含的语言? 2)生成的翻译模型如何有效地转移到新域?为了回答这些问题,我们创建了一个新的非洲新闻语料库,涵盖16种语言,其中8种语言不属于任何现有评估数据集的一部分。我们证明,将两种语言转移到其他语言和其他领域的最有效策略是,以少量的高质量翻译数据微调大型预训练模型。
translated by 谷歌翻译
鉴定该领域的矿物质是一个以许多挑战造成的任务。传统方法容易出错,没有足够的经验和专业知识。几种现有技术主要在显微镜下利用矿物质的特征,倾向于有利于手动特征提取管道。深入学习方法可以帮助克服这些障碍,并提供简单有效的方法来识别矿物质。在本文中,我们提出了一种识别来自手样标本图像的矿物的算法。使用卷积神经网络(CNN),我们开发一个标签图像分类模型,以识别和分类七种矿物质。使用现实数据集进行的实验表明,该模型的准确性为90.75%。
translated by 谷歌翻译