我们最近提出了一个以DBM为中心的新群集操作系统堆栈DBO。DBO通过将ML代码封装在存储过程中,集中辅助ML数据,为基础DBMS内置的安全性,共同关注ML代码和数据以及跟踪数据和工作流源来源,从而为ML应用程序提供了独特的支持。在这里,我们在两个ML应用程序附近演示了这些好处的子集。我们首先表明,使用GPU的图像分类和对象检测模型可以用作DBOS存储程序,具有与现有系统竞争性能的DBOS存储程序。然后,我们提出了一项1D CNN,训练有素,可以在DBOS支持的Web服务上检测HTTP请求中的异常情况,从而实现SOTA结果。我们使用此模型来开发交互式异常检测系统,并通过定性用户反馈对其进行评估,并证明了其有用性作为未来工作的概念证明,以在DBO上开发实时的实时安全服务。
translated by 谷歌翻译
皮质假体是植入视觉皮层中的设备,试图通过电刺激神经元来恢复视力失去视力。当前,这些设备提供的视觉是有限的,并且准确预测刺激引起的视觉感知是一个开放的挑战。我们建议通过利用“大脑样”卷积神经网络(CNN)来应对这一挑战,这些卷积神经网络已成为视觉系统的有前途的模型。为了研究适应大脑样的CNN来建模视觉假体的可行性,我们开发了一种概念验证模型,以预测电刺激引起的感知。我们表明,CNN激活的神经学启发的解码会产生定性准确的磷酸,可与实际患者报道的磷酸相媲美。总体而言,这是建立类似大脑的电刺激模型的重要第一步,这可能不仅可以提高皮质假体提供的视力质量,而且还可以进一步提高我们对神经视力守则的理解。
translated by 谷歌翻译
立方正则化方法(CR)是一种流行的算法,用于无限制的非凸优化。在每次迭代中,CR解决了一个立方正规化的二次问题,称为立方正则化子问题(CRS)。解决CRS的一种方法依赖于解决世俗方程,其计算瓶颈在于计算Hessian矩阵的所有特征值。在本文中,我们根据近似的世俗方程提出和分析了一种新颖的CRS求解器,该方程仅需要一些Hessian特征值,因此更有效。开发了两个近似的世俗方程(ASE)。对于这两个ASE,我们首先研究其根的存在和独特性,然后在根部和标准世俗方程之间的间隙上建立上层界限。这样的上限可以依次用于绑定从基于AS的近似CRS解决方案到真实CRS解决方案的距离,从而为我们的CRS求解器提供理论保证。我们CRS求解器的理想特征是它仅需要矩阵向量乘法,而不需要矩阵反转,这使其特别适合于无限制的非凸优化的高维应用,例如低级别恢复和深度学习。进行合成和实际数据集的数值实验是为了研究拟议的CRS求解器的实际性能。实验结果表明,所提出的求解器的表现优于两种最先进的方法。
translated by 谷歌翻译
在许多情况下,更简单的模型比更复杂的模型更可取,并且该模型复杂性的控制是机器学习中许多方法的目标,例如正则化,高参数调整和体系结构设计。在深度学习中,很难理解复杂性控制的潜在机制,因为许多传统措施并不适合深度神经网络。在这里,我们开发了几何复杂性的概念,该概念是使用离散的dirichlet能量计算的模型函数变异性的量度。使用理论论据和经验结果的结合,我们表明,许多常见的训练启发式方法,例如参数规范正规化,光谱规范正则化,平稳性正则化,隐式梯度正则化,噪声正则化和参数初始化的选择,都可以控制几何学复杂性,并提供一个统一的框架,以表征深度学习模型的行为。
translated by 谷歌翻译
为了追踪和运动捕获(MOCAP)在其自然栖息地中的动物,非常适合安全和无声的空中平台,例如带有车载摄像机的飞艇。但是,与多旋转器不同,飞艇受到严格的运动限制和受环境风的影响。它们的方向和飞行方向也紧密耦合。因此,用于感知任务的基于最新的MPC的形成控制方法不适用于飞艇团队。在本文中,我们首先利用飞艇的空速与其与主题的距离之间的定期关系来解决这个问题。我们使用它来得出满足MOCAP感知约束的分析和数字解决方案。基于此,我们开发了一个基于MPC的编队控制器。我们对解决方案进行了详细的分析,包括改变物理参数(例如攻击角度和俯仰角)的影响。提出了广泛的仿真实验,比较了不同的形成大小,不同的风条件和各种受试者速度的结果。还包括我们关于真实飞艇的方法的演示。我们已经在https://github.com/robot-pocepepon-group/airship-mpc上发布了所有源代码。可以在https://youtu.be/ihs0_vrd_kk上观看描述我们方法和结果的视频。
translated by 谷歌翻译
运营商网络已成为有希望的深度学习工具,用于近似偏微分方程(PDE)的解决方案。这些网络绘制了描述材料属性,迫使函数和边界数据的输入函数到PDE解决方案。这项工作描述了一种针对操作员网络的新体系结构,该架构模仿了从问题的变异公式或弱公式中获得的数值解决方案的形式。这些想法在通用椭圆的PDE中的应用导致变异模拟操作员网络(Varmion)。像常规的深层操作员网络(DeepOnet)一样,Varmion也由一个子网络组成,该子网络构建了输出的基础函数,另一个构造了这些基础函数系数的基本功能。但是,与deponet相反,在Varmion中,这些网络的体系结构是精确确定的。对Varmion解决方案中误差的分析表明,它包含训练数据中的误差,训练错误,抽样输入中的正交误差和输出功能的贡献,以及测量测试输入功能之间距离的“覆盖错误”以及培训数据集中最近的功能。这也取决于确切网络及其varmion近似的稳定性常数。 Varmion在规范椭圆形PDE中的应用表明,对于大约相同数量的网络参数,平均而言,Varmion的误差比标准DeepOnet较小。此外,其性能对于输入函数的变化,用于采样输入和输出功能的技术,用于构建基本函数的技术以及输入函数的数量更为强大。
translated by 谷歌翻译
在本文中,我们为定性选择逻辑(QCL)介绍了游戏理论语义(GTS),为了表达偏好,它将使用称为有序分离的附加结节扩展了经典的命题逻辑。首先,我们证明游戏语义可以自然地捕获QCL的现有基于学位的语义。其次,我们证明可以利用游戏语义来推导QCL语言的新语义。特别是,我们提出了一种新的语义,该语义利用GTS否定,并避免了现有QCL-仪式中的否定问题。
translated by 谷歌翻译
我们提出了DeepFusion,这是一种模块化的多模式结构,可在不同组合中以3D对象检测为融合激光雷达,相机和雷达。专门的功能提取器可以利用每种模式,并且可以轻松交换,从而使该方法变得简单而灵活。提取的特征被转化为鸟眼视图,作为融合的共同表示。在特征空间中融合方式之前,先进行空间和语义对齐。最后,检测头利用丰富的多模式特征,以改善3D检测性能。 LIDAR相机,激光摄像头雷达和摄像头融合的实验结果显示了我们融合方法的灵活性和有效性。在此过程中,我们研究了高达225米的遥远汽车检测的很大程度上未开发的任务,显示了激光摄像机融合的好处。此外,我们研究了3D对象检测的LIDAR点所需的密度,并在对不利天气条件的鲁棒性示例中说明了含义。此外,对我们的摄像头融合的消融研究突出了准确深度估计的重要性。
translated by 谷歌翻译
在深度学习时代,注释的数据集已成为遥感社区的关键资产。在过去的十年中,发表了许多不同的数据集,每个数据集都为特定的数据类型以及特定的任务或应用程序设计。在遥感数据集的丛林中,很难跟踪已经可用的内容。在本文中,我们介绍了EOD -IEEE GRSS地球观察数据库(EOD) - 一个交互式在线平台,用于分类不同类型的数据集利用遥感图像。
translated by 谷歌翻译
我们提供了证据表明,学到的密度功能理论(``dft')的力场已准备好进行基态催化剂发现。我们的关键发现是,尽管预测的力与地面真相有很大差异,但使用从超过50 \%的评估系统中使用RPBE功能的能量与使用RPBE功能相似或较低能量的力量的力量与使用RPBE功能相似或较低的力量放松。这具有令人惊讶的含义,即学习的潜力可能已经准备好在挑战性的催化系统中替换DFT,例如在Open Catalyst 2020数据集中发现的电位。此外,我们表明,在局部谐波能量表面上具有与目标DFT能量相同的局部谐波能量表面训练的力场也能够在50 \%的情况下找到较低或相似的能量结构。与在真实能量和力量训练的标准模型相比,这种``简易电位''的收敛步骤更少,这进一步加速了计算。它的成功说明了一个关键:即使模型具有高力误差,学到的电位也可以定位能量最小值。结构优化的主要要求仅仅是学到的电位具有正确的最小值。由于学到的电位与系统大小的速度快速且尺寸为线性,因此我们的结果开辟了快速找到大型系统基础状态的可能性。
translated by 谷歌翻译