尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
历史流程表现出显着的多样性。尽管如此,学者们长期以来一直试图识别模式,并将历史行动者分类和对一些成功的影响。随机过程框架提供了一种结构化方法,用于分析大型历史数据集,允许检测有时令人惊讶的模式,鉴定内源性和外源对过程的相关因果作用者,以及不同历史案例的比较。随机过程的数据,分析工具和组织理论框架的组合使历史和考古中的传统叙事方法补充了传统的叙事方法。
translated by 谷歌翻译
晶体和分子感兴趣的特性,例如带隙,弹性和溶解度,通常相互关联:它们受相同的基础物理定律的控制。但是,当最新的图形神经网络尝试同时预测多个属性(多任务学习(MTL)设置)时,它们经常表现不佳。这表明图形网络可能无法完全利用这些潜在的相似性。在这里,我们研究了这种现象的潜在解释:每个物业损失表面的曲率都有很大变化,导致学习效率低下。曲率上的这种差异可以通过查看每个属性损耗函数的Hessians的光谱特性来评估,这是通过随机数值线性代数以无基质方式完成的。我们在两个基准数据集(材料项目(MP)和QM8)上评估我们的假设,并考虑这些发现如何为新颖的多任务学习模型的培训提供信息。
translated by 谷歌翻译
与分析气相色谱法 - 质谱(GC -MS)数据相关的挑战很多。这些挑战中的许多挑战源于以下事实:电子电离可能使由于高度的分裂程度与分子离子信号的损失而难以恢复分子信息。使用GC-MS数据,通常在密切洗脱峰之间共享许多常见的片段离子,因此需要进行复杂的分析方法。其中一些方法是完全自动化的,但是对数据可以在分析过程中引入伪影的数据做出了一些假设。化学计量方法(例如多元曲线分辨率或平行因子分析)特别有吸引力,因为它们是灵活的,并且对数据的假设相对较少 - 理想情况下会导致伪像较少。这些方法确实需要专家用户干预来确定每个区域的最相关区域和适当数量的组件,即$ k $。需要选择自动化区域,以允许使用高级信号反卷积的色谱数据自动批处理处理。在这里,我们提出了一种新的方法,用于自动化,不靶心的感兴趣的选择区域,该方法是根据平方的比率和第二个单数值分解的比率来解释GC-MS数据中存在的多元信息,以选择感兴趣的区域。在色谱图上移动的窗口。假设第一个奇异值主要解释了信号,而第二个奇异值主要解释了噪声,则可以将这两个值之间的关系解释为Fisher比率的概率分布。通过研究该算法不再挑选已知包含信号的色谱区的浓度来测试算法的灵敏度。
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
在不完整的数据集中对样本进行分类是机器学习从业人员的普遍目的,但并非平凡。在大多数现实世界数据集中发现缺失的数据,这些缺失值通常是使用已建立的方法估算的,然后进行分类现在完成,估算的样本。然后,机器学习研究人员的重点是优化下游分类性能。在这项研究中,我们强调必须考虑插补的质量。我们展示了如何评估质量的常用措施有缺陷,并提出了一类新的差异评分,这些分数着重于该方法重新创建数据的整体分布的程度。总而言之,我们强调了使用不良数据训练的分类器模型的可解释性损害。
translated by 谷歌翻译
由于技术困难以与原始数据一致的方式更改数据,因此在网络安全域中,数据扩展很少见。鉴于获得符合版权限制的良性和恶意培训数据的独特困难,这一缺陷尤其繁重,而银行和政府等机构会收到有针对性的恶意软件,这些恶意软件永远不会大量存在。我们介绍Marvolo是一种二进制突变器,该突变器以编程方式生产恶意软件(和良性)数据集,以提高ML驱动的恶意软件探测器的准确性。 Marvolo采用语义保护代码转换,模仿恶意软件作者和防御性良性开发人员通常在实践中进行的更改,从而使我们能够生成有意义的增强数据。至关重要的是,语义传播的转换也使Marvolo能够安全地将标签从原始生成的数据样本传播到,而无需规定昂贵的二进制文件的昂贵反向工程。此外,Marvolo通过最大化给定时间(或资源)预算中生成的各种数据样本的密度来最大化,使从业人员最大程度地嵌入了几种关键优化。使用广泛的商业恶意软件数据集和最近的ML驱动的恶意软件探测器进行的实验表明,Marvolo将准确性提高了5%,而仅在潜在的输入二进制文件的一小部分(15%)上运行。
translated by 谷歌翻译
自动生物医学图像分析的领域至关重要地取决于算法验证的可靠和有意义的性能指标。但是,当前的度量使用通常是不明智的,并且不能反映基本的域名。在这里,我们提出了一个全面的框架,该框架指导研究人员以问题意识的方式选择绩效指标。具体而言,我们专注于生物医学图像分析问题,这些问题可以解释为图像,对象或像素级别的分类任务。该框架首先编译域兴趣 - 目标结构 - ,数据集和算法与输出问题相关的属性的属性与问题指纹相关,同时还将其映射到适当的问题类别,即图像级分类,语义分段,实例,实例细分或对象检测。然后,它指导用户选择和应用一组适当的验证指标的过程,同时使他们意识到与个人选择相关的潜在陷阱。在本文中,我们描述了指标重新加载推荐框架的当前状态,目的是从图像分析社区获得建设性的反馈。当前版本是在由60多个图像分析专家的国际联盟中开发的,将在社区驱动的优化之后公开作为用户友好的工具包提供。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译