医疗AI通过支持基于证据的医学实践,个性化患者治疗,降低成本以及改善提供者和患者体验,推进医疗保健的巨大潜力。我们认为解锁此潜力需要一种系统的方法来衡量在大规模异构数据上的医疗AI模型的性能。为了满足这种需求,我们正在建立Medperf,这是一个开放的框架,用于在医疗领域的基准测试机器学习。 Medperf将使联合评估能够将模型安全地分配给不同的评估设施,从而赋予医疗组织在高效和人类监督过程中评估和验证AI模型的性能,同时优先考虑隐私。我们描述了当前的挑战医疗保健和AI社区面临,需要开放平台,Medperf的设计理念,其目前的实施状态和我们的路线图。我们呼吁研究人员和组织加入我们创建Medperf开放基准平台。
translated by 谷歌翻译
虽然对配对关系的建模在多代理交互系统中得到了广泛的研究,但其捕获更高级别和较大规模的小组活动的能力受到限制。在本文中,我们提出了一种群体感知的关系推理方法(命名为EvolveHyhyPergraph),并明确推断了基本的动态发展的关系结构,并且我们证明了其对多机构轨迹预测的有效性。除了一对节点之间的边缘(即代理)之间的边缘外,我们还建议推断出适应性地连接多个节点的超核,以在不固定Hyperedges的数量的情况下以无聊的方式启用群体感知的关系推理。所提出的方法随着时间的推移而动态发展的关系图和超图表,以捕获关系的演变,而轨迹预测指标将其用于获得未来的状态。此外,我们建议将关系演化的平稳性和推断图或超图的稀疏性正规化,从而有效地提高了训练稳定性并增强了推断关系的解释性。在综合人群模拟和多个现实世界基准数据集上都验证了所提出的方法。我们的方法不理会在长期预测中解释,合理的团体感知关系并取得最先进的表现。
translated by 谷歌翻译
机器学习(ML)加速化学发现的两个突出挑战是候选分子或材料的合成性以及ML模型训练中使用的数据的保真度。为了应对第一个挑战,我们构建了一个假设的设计空间,为3250万转型金属复合物(TMC),其中所有组成片段(即金属和配体)和配体对称性都可以合成。为了应对第二项挑战,我们在雅各布梯子的多个梯级之间的23个密度功能近似之间搜索预测的共识。为了加快这3250万TMC的筛选,我们使用有效的全局优化来样本候选低自旋发色团,同时具有低吸收能和低静态相关性。尽管在这个大化的化学空间中的潜在发色团缺乏(即$ <$ 0.01 \%),但随着ML模型在积极学习过程中的改善,我们确定了高可能性(即$> $ 10 \%)的过渡金属发色团(即$> $ 10 \%)。这代表发现的1,000倍加速度,与几天而不是几年中的发现相对应。对候选发色团的分析揭示了对CO(III)和具有更大键饱和度的大型强野配体的偏爱。我们根据时间依赖性密度功能理论计算计算帕累托前沿上有希望的发色团的吸收光谱,并验证其中三分之二是否需要激发态特性。尽管这些复合物从未经过实验探索,但它们的组成配体在文献中表现出有趣的光学特性,体现了我们构建现实的TMC设计空间和主动学习方法的有效性。
translated by 谷歌翻译
在教育环境中进行随机实验提出了一个问题,即我们如何使用机器学习技术来改善教育干预措施。使用自适应实验中的汤普森采样(TS)(TS)等多臂匪徒(MAB)算法,即使在干预完成之前,也可以通过增加对最佳状态(ARM)的分配可能性来获得更好的结果的机会。这是比传统的A/B测试的优势,该测试可能会分配相等数量的学生为最佳和非最佳条件。问题是勘探探索权衡取舍。尽管自适应政策旨在收集足够的信息来分配更多的学生以可靠地提供更好的武器,但过去的工作表明,这可能还不够探索,无法就武器是否有所不同,得出可靠的结论。因此,在整个实验中提供额外的均匀随机(UR)探索是很有趣的。本文展示了一个真实的自适应实验,该实验是关于学生如何与教师每周的电子邮件提醒互动以建立时间管理习惯的。我们感兴趣的指标是打开电子邮件率,它跟踪由不同主题行的武器。这些是按照不同的分配算法传递的:ur,ts和我们确定为ts {\ dag} - 结合了TS和UR奖励以更新其先验者。我们强调了这些自适应算法的问题 - 在没有显着差异时可能会剥削手臂 - 并解决它们的原因和后果。未来的方向包括研究最佳臂的早期选择不是理想的情况以及自适应算法如何解决它们的情况。
translated by 谷歌翻译
在本文中,我们提出了一个新颖的对象级映射系统,该系统可以同时在动态场景中分段,跟踪和重建对象。它可以通过对深度输入的重建和类别级别的重建来进一步预测并完成其完整的几何形状,其目的是完成对象几何形状会导致更好的对象重建和跟踪准确性。对于每个传入的RGB-D帧,我们执行实例分割以检测对象并在检测和现有对象图之间构建数据关联。将为每个无与伦比的检测创建一个新的对象映射。对于每个匹配的对象,我们使用几何残差和差分渲染残留物共同优化其姿势和潜在的几何表示形式,并完成其形状之前和完成的几何形状。与使用传统的体积映射或学习形状的先验方法相比,我们的方法显示出更好的跟踪和重建性能。我们通过定量和定性测试合成和现实世界序列来评估其有效性。
translated by 谷歌翻译
由于异质访问点(APS)的性质,负载平衡(LB)是混合灯保真度(LIFI)和无线保真度(WIFI)网络(HLWNETS)的挑战性问题。机器学习有可能以近乎最佳的网络性能为培训过程提供复杂性的LB解决方案。但是,当网络环境(尤其是用户数量)更改时,需要进行最先进的(SOTA)学习辅助LB方法,这大大限制了其实用性。在本文中,提出了一个新颖的深神经网络(DNN)结构,称为自适应目标条件神经网络(A-TCNN),该结构在其他用户的条件下为一个目标用户进行AP选择。此外,开发了一种自适应机制,可以通过分配数据速率要求将较大数量的用户映射到较大的数字,而不会影响目标用户的AP选择结果。这使提出的方法可以处理不同数量的用户,而无需再进行重新培训。结果表明,A-TCNN实现了非常接近测试数据集的网络吞吐量,差距小于3%。还证明,A-TCNN可以获得与两个SOTA基准相当的网络吞吐量,同时最多将运行时降低了三个数量级。
translated by 谷歌翻译
团队是人类成就的核心。在过去的半个世纪中,心理学家已经确定了五个跨文化有效的人格变量:神经质,外向性,开放性,尽职尽责和同意。前四个与团队绩效显示一致的关系。然而,令人愉快的(和谐,无私,谦虚和合作)表现出与团队绩效的无关紧要和高度可变的关系。我们通过计算建模解决这种不一致。基于代理的模型(ABM)用于预测人格特质对团队合作的影响,然后使用遗传算法来探索ABM的限制,以发现哪种特征与最佳和最差的表现相关,以解决与与最差的团队相关的问题,以解决与问题有关的问题。不同级别的不确定性(噪声)。探索所揭示的新依赖性通过分析迄今为止最大的团队绩效数据集的先前未观察到的数据来证实,其中包括593个团队中的3,698个个人,从事5,000多个没有不确定性的小组任务,在10年内收集了不确定性。我们的发现是,团队绩效和同意之间的依赖性受到任务不确定性的调节。以这种方式将进化计算与ABM相结合,为团队合作的科学研究,做出新的预测以及提高我们对人类行为的理解提供了一种新方法。我们的结果证实了计算机建模对发展理论的潜在实用性,并阐明了随着工作环境的越来越流畅和不确定的启示。
translated by 谷歌翻译
人的大脑能够依次地学习任务,而无需忘记。但是,深度神经网络(DNN)在学习一项任务时遭受灾难性遗忘。我们考虑了一个挑战,考虑了一个课堂学习方案,在该方案中,DNN看到测试数据而不知道该数据启动的任务。在培训期间,持续的捕获和选择(CP&S)在DNN中找到了负责解决给定任务的子网。然后,在推理期间,CP&S选择正确的子网以对该任务进行预测。通过培训DNN的可用神经元连接(以前未经训练)来创建一个新的子网络,从而通过修剪来学习一项新任务,该连接可以包括以前训练的其他子网络(S),因为它没有更新共享的连接,因为它可以属于其他子网络(S)。这使得通过在DNN中创建专门的区域而不会相互冲突的同时仍允许知识转移在其中,可以消除灾难性的遗忘。 CP&S策略采用不同的子网络选择策略实施,揭示了在各种数据集(CIFAR-100,CUB-200,2011年,Imagenet-100和Imagenet-100)上测试的最先进的持续学习方法的卓越性能。特别是,CP&S能够从Imagenet-1000中依次学习10个任务,以确保94%的精度,而遗忘可忽略不计,这是课堂学习学习的首要结果。据作者所知,与最佳替代方法相比,这表示准确性高于20%的改善。
translated by 谷歌翻译
黑色素瘤是一种严重的皮肤癌,在后期阶段高死亡率。幸运的是,当早期发现时,黑色素瘤的预后是有希望的,恶性黑色素瘤的发病率相对较低。结果,数据集严重不平衡,这使培训当前的最新监督分类AI模型变得复杂。我们建议使用生成模型来学习良性数据分布,并通过密度估计检测出分布(OOD)恶性图像。标准化流(NFS)是OOD检测的理想候选者,因为它们可以计算精确的可能性。然而,它们的感应偏见对明显的图形特征而不是语义上下文障碍障碍的OOD检测。在这项工作中,我们旨在将这些偏见与黑色素瘤的领域水平知识一起使用,以改善基于可能性的OOD检测恶性图像。我们令人鼓舞的结果表明,使用NFS检测黑色素瘤的可能性。我们通过使用基于小波的NFS,在接收器工作特性的曲线下,面积增加了9%。该模型需要较少的参数,以使其更适用于边缘设备。拟议的方法可以帮助医学专家诊断出皮肤癌患者并不断提高存活率。此外,这项研究为肿瘤学领域的其他领域铺平了道路,具有类似的数据不平衡问题\ footNote {代码可用:
translated by 谷歌翻译
因果鉴定是因果推理文献的核心,在该文献中提出了完整的算法来识别感兴趣的因果问题。这些算法的有效性取决于访问正确指定的因果结构的限制性假设。在这项工作中,我们研究了可获得因果结构概率模型的环境。具体而言,因果图中的边缘是分配的概率,例如,可能代表来自领域专家的信念程度。另外,关于边缘的不确定的可能反映了特定统计检验的置信度。在这种情况下自然出现的问题是:给定这样的概率图和感兴趣的特定因果效应,哪些具有最高合理性的子图是什么?我们表明回答这个问题减少了解决NP-HARD组合优化问题,我们称之为边缘ID问题。我们提出有效的算法来近似此问题,并评估我们针对现实世界网络和随机生成图的算法。
translated by 谷歌翻译