在神经元网络中,使用本地信息单独更新,允许完全分散的学习。相反,人工神经网络(ANN)中的元件通常使用中央处理器同时更新。在这里,我们调查最近引入的分散,物理驱动的学习网络中异步学习的可行性和影响。我们表明,在理想化模拟中,Desynchization Learing Processe不会降低各种任务的性能。在实验中,Des同步实际上通过允许系统更好地探索解决方案的离散状态空间来实现性能。我们在随机梯度下降中的异步和迷你批处理之间绘制了类比,并表明它们对学习过程具有类似的影响。 des同步学习过程将物理驱动的学习网络建立为真正完全分布式的学习机器,在部署中提高更好的性能和可扩展性。
translated by 谷歌翻译
我们提出了分析分层聚类的方法,这些聚类完全使用了树木图提供的多分辨率结构。具体地,我们提出了在聚类方法之间选择的损失,特征重要性分数和用于可视化树木图中的特征分割的图形工具。这些任务的当前方法导致信息丢失,因为它们要求用户通过在指定级别切割树木图来生成本实例的单个分区。我们提出的方法使用了树木图的全结构。所提出的方法背后的关键洞察是将树形图视为系统发育。该类比允许通过祖先状态重建向树的每个内部节点分配特征值。真实和模拟数据集提供了证据表明我们所提出的框架具有理想的结果。我们提供了实现我们方法的R包。
translated by 谷歌翻译
在过去十年中,发光二极管(LED)几乎在每个应用中都取代了常见的灯泡,从智能手机中的手电筒到汽车前灯。照亮夜间街道需要LED发出光谱,被人眼被人眼被视为纯白色。与这种白光谱相关的电力不仅分布在贡献波长上,而且在视觉角度上分布。对于许多应用,可用的光线需要在向前的方向上退出LED,即在小角度到垂直。在这项工作中,我们证明了白色LED顶部的专门设计的多层薄膜增加了向前发射的纯白光的功率。因此,推导的多目标优化问题是通过实质物理引导的目标函数重新重新制定,该函数代表了我们工程问题的层次结构。采用贝叶斯优化的变体基于射线跟踪模拟来最大化这种非确定性目标函数。最终,对合适的多层薄膜的光学性质的研究允许识别白光方向性的增加的机制:角度和波长选择性过滤导致多层薄膜与光线的乒乓球发挥作用。
translated by 谷歌翻译
尽管存在能够在许多医疗数据集上表现出很好的语义分割方法,但是通常,它们不设计用于直接用于临床实践。两个主要问题是通过不同的视觉外观的解开数据的概括,例如,使用不同的扫描仪获取的图像,以及计算时间和所需图形处理单元(GPU)存储器的效率。在这项工作中,我们使用基于SpatialConfiguration-Net(SCN)的多器官分段模型,该模型集成了标记器官中的空间配置的先验知识,以解决网络输出中的虚假响应。此外,我们修改了分割模型的体系结构,尽可能地减少其存储器占用空间,而不会急剧影响预测的质量。最后,我们实现了最小的推理脚本,我们优化了两者,执行时间和所需的GPU内存。
translated by 谷歌翻译
在过去十年中,已经开发出新的深度学习(DL)算法,工作负载和硬件来解决各种问题。尽管工作量和硬件生态系统的进步,DL系统的编程方法是停滞不前的。 DL工作负载从DL库中的高度优化,特定于平台和不灵活的内核,或者在新颖的操作员的情况下,通过具有强大性能的DL框架基元建立参考实现。这项工作介绍了Tensor加工基元(TPP),一个编程抽象,用于高效的DL工作负载的高效,便携式实现。 TPPS定义了一组紧凑而多才多艺的2D张镜操作员(或虚拟张量ISA),随后可以用作构建块,以在高维张量上构建复杂的运算符。 TPP规范是平台 - 不可行的,因此通过TPPS表示的代码是便携式的,而TPP实现是高度优化的,并且特定于平台。我们展示了我们使用独立内核和端到端DL&HPC工作负载完全通过TPPS表达的方法的效力和生存性,这在多个平台上优于最先进的实现。
translated by 谷歌翻译