基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
卷积层和损耗功能是深度学习中的两个基本组件。由于传统的深度学习内核的成功,尽管它们可以提供不同频率,方向和比例的不同频率,方向和尺度的丰富功能,但较不可能的Gabor内核变得不那么受欢迎。对于多级图像分割的现有损失函数,通常有准确性,鲁棒性对超参数的折衷以及用于组合不同损失的手动选择。因此,为了获得使用Gabor核心的益处,同时保持深度学习中的自动特征生成的优势,我们提出了一种完全可训练的Gabor的卷积层,其中所有Gabor参数都是通过BackPropagation培训的。此外,我们基于Pearson的相关系数提出了一种损失函数,这是准确的,对学习速率的准确,鲁棒性,并且不需要手动重量选择。在43d脑磁共振图像上的实验,具有19个解剖结构,表明,使用所提出的损失功能与常规和基于Gabor的内核的适当组合,我们可以训练只有160万参数的网络,以实现83的平均骰子系数%。该尺寸比V-NET小44倍,具有7100万参数。本文展示了在深度学习3D分割中使用学习参数核的潜力。
translated by 谷歌翻译
在学术界,抄袭肯定不是一个新兴的关注,但它随着互联网的普及和对全球内容来源的易于访问而变得更大的程度,使人类干预不足。尽管如此,由于计算机辅助抄袭检测,抄袭远远远非是一个未被解除的问题,目前是一个有效的研究领域,该研究落在信息检索(IR)和自然语言处理(NLP)领域。许多软件解决方案有助于满足这项任务,本文概述了用于阿拉伯语,法国和英语学术和教育环境的抄袭检测系统。比较在八个系统之间持有,并在检测不同来源的三个混淆水平的特征,可用性,技术方面以及它们的性能之间进行:逐字,释义和跨语言抄袭。在本研究的背景下也进行了对技术形式的抄袭技术形式的关注检查。此外,还提供了对不同作者提出的抄袭类型和分类的调查。
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
对象运动和对象外观是多个对象跟踪(MOT)应用中的常用信息,用于将帧跨越帧的检测相关联,或用于联合检测和跟踪方法的直接跟踪预测。然而,不仅是这两种类型的信息通常是单独考虑的,而且它们也没有帮助直接从当前感兴趣帧中使用视觉信息的用法。在本文中,我们提出了PatchTrack,一种基于变压器的联合检测和跟踪系统,其使用当前感兴趣的帧帧的曲线预测曲目。我们使用卡尔曼滤波器从前一帧预测当前帧中的现有轨道的位置。从预测边界框裁剪的补丁被发送到变压器解码器以推断新曲目。通过利用在补丁中编码的对象运动和对象外观信息,所提出的方法将更多地关注新曲目更有可能发生的位置。我们展示了近期MOT基准的Patchtrack的有效性,包括MOT16(MOTA 73.71%,IDF1 65.77%)和MOT17(MOTA 73.59%,IDF1 65.23%)。结果在https://motchallenge.net/method/mot=4725&chl=10上发布。
translated by 谷歌翻译
基于两阶段Walsh-Hadamard变换(WHT)的用于水下机器人的卷积神经网络(CNN)基于对象分类,提出了新的高效源特征压缩解决方案。在两阶段过程之后首先通过WHT转换对象图像。变换域张量子具有大值集中在RGB通道中矩阵的左上角。通过观察此属性,将变换域矩阵划分为内部和外部区域。因此,在这项工作中提出了两种新的分区方法:(i)固定内部区域和外部区域的尺寸; (ii)每张图像自适应地调节内部区域和外部区域的大小。提案是用来自美国新泽西州新泽西雷塔河捕获的水下对象数据集进行评估。据证明并验证了提案,有效地减少了基于学习的水下对象分类任务的培训时间,并与竞争方法相比增加了准确性。对象分类是基于视觉的水下机器人的重要组成部分,可以感知环境并自主导航。因此,该方法非常适合于水下机器人应用中的高效基于计算机视觉任务。
translated by 谷歌翻译
为满足城市内部运输中不断增长的行动需求,已经提出了城市空运(UAM)的概念,其中垂直起飞和着陆(VTOL)飞机用于提供乘车服务。在UAM中,飞机可以在称为走廊的指定空间中运行,链接机场。 GBS和飞机之间的可靠通信网络使UAM能够充分利用空域,并创造快速,高效,安全的运输系统。在本文中,为了表征UAM的无线连接性能,提出了一种空间模型。对于该设置,导出任意选择的GBS与其相关飞机之间的距离和GBS经历的干扰的拉普拉斯变换的分布。使用这些结果,确定基于信号的连通概率(SIR)以捕获UAM飞机到地通信网络的连接性能。然后,提出了利用这些连接结果,建议使用傅里叶神经网络的无线的异步联合学习(AFL)框架来解决UAM操作期间湍流预测的具有挑战性问题。对于该AFL方案,引入了一种静止感知的全局聚合方案,以加快UAM飞机使用的最佳湍流预测模型的收敛性。仿真结果验证了UAM无线连接的理论派生。结果还表明,所提出的AFL框架会收敛于比同步联合学习基线和无期性的AFL方法更快地收敛到最佳湍流预测模型。此外,结果表征了在不同参数设置下的无线连接和飞机湍流模型的融合性能的性能,提供了有用的UAM设计指南。
translated by 谷歌翻译
灵感来自于自然语言处理中的多主头注意(MHA)机制,这封信提出了多UAV路径规划的迭代单人主题(ISHA)机制。ISHA机制由沟通助手收集UVS的状态嵌入式并将注意力分数矢量分配给每个UAV。ISHA计算的注意分数确定了每个UAV的控制决策中应考虑与其他无人机的交互程度。仿真结果证实了基于ISHA的通信和控制框架实现了比MHA辅助基线更低的UAV碰撞风险的快速旅行,特别是在通信资源有限下。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
海浪可再生能源快速成为近几十年来可再生能源行业的关键部分。通过在该过程中开发波能转换器作为主转换器技术,研究了它们的电力起飞(PTO)系统。调整PTO参数是一个具有挑战性的优化问题,因为这些参数与吸收功率输出之间存在复杂和非线性关系。在这方面,本研究旨在优化在澳大利亚海岸的珀斯的波路场景中的点吸收波能量转换器的PTO系统参数。转换器在数量上设计成振荡,以防止不规则,并且执行PTO设置的多维波和灵敏度分析。然后,要找到导致最高功率输出的最佳PTO系统参数,并入了十种优化算法,以解决非线性问题,包括Nelder-Mead搜索方法,主动集方法,顺序二次编程方法(SQP),多节透视优化器(MVO)和六种改进的遗传,代理和Fminsearch算法组合。在可行性景观分析之后,执行优化结果并在PTO系统设置方面提供最佳答案。最后,调查表明,遗传,替代和FMINSEARCH算法的修改组合可以优于所研究的波场景中的其他组合,以及PTO系统变量之间的相互作用。
translated by 谷歌翻译