我们向多人3D运动轨迹预测提出了一种新颖的框架。我们的主要观察是,人类的行动和行为可能高度依赖于其他人。因此,不是以隔离预测每个人类姿势轨迹,我们引入了一种多范围变压器模型,该模型包含用于各个运动的局部运动和用于社交交互的全局范围编码器。然后,通过将相应的姿势作为查询来参加本地和全球范围编码器特征,对变压器解码器对每个人进行预测。我们的模型不仅优于长期3D运动预测的最先进的方法,而且还产生了不同的社交互动。更有趣的是,我们的模型甚至可以通过自动将人分为不同的交互组来同时预测15人运动。具有代码的项目页面可在https://jiahunwang.github.io/mrt/处获得。
translated by 谷歌翻译
虽然最近关于多语种语言模型的工作已经证明了他们对下游任务的交叉零射击传输的能力,但社区缺乏符合语言之间的共享属性,可以实现这种转移。涉及成对的自然语言的分析通常是不确定的,并且矛盾以来,许多语言方面同时不同。在本文中,我们进行大规模的实证研究,通过测量四种不同的自然语言和通过修改脚本,单词顺序和语法等方面构造的零拍摄传递来隔离各种语言特性的影响。在其他事情之外,我们的实验表明,当语言的单词顺序不同时,缺乏子字重叠显着影响零拍摄传输,并且在语言之间的传输性能和Word嵌入对准之间存在强烈相关性(例如,r = 0.94关于NLI的任务)。我们的结果呼吁专注于在明确改进语言之间的嵌入对齐而不是依赖于隐含的出现。
translated by 谷歌翻译