在3D点云上的应用程序越来越需要效率和鲁棒性,在自动驾驶和机器人技术等场景中无处不在使用边缘设备,这通常需要实时和可靠的响应。该论文通过设计一个通用框架来应对挑战,以构建具有(3)均衡和网络二元化的3D学习体系结构。然而,模棱两可的网络和二元化的幼稚组合会导致优化的计算效率或几何歧义。我们建议在网络中同时找到标量和向量特征,以避免这两种情况。确切地说,标量特征的存在使网络的主要部分是可动的,而矢量特征则可以保留丰富的结构信息并确保SO(3)均衡。提出的方法可以应用于PointNet和DGCNN等一般骨干。同时,对ModelNet40,Shapenet和现实世界数据集ScanObjectnn进行的实验表明,该方法在效率,旋转稳健性和准确性之间取决于巨大的权衡。这些代码可在https://github.com/zhuoinoulu/svnet上找到。
translated by 谷歌翻译