自动驾驶(AD)相关功能代表了下一代移动机器人和专注于越来越智能,自主和互连系统的自动驾驶汽车的重要元素。根据定义,必须提供涉及使用这些功能的应用程序,并且此属性是避免灾难性事故的关键。此外,所有决策过程都必须需要低功耗,以增加电池驱动系统的寿命和自主权。这些挑战可以通过有效实施神经形态芯片上的尖峰神经网络(SNN)以及使用基于事件的摄像机而不是传统基于框架的摄像机来解决这些挑战。在本文中,我们提出了一种新的基于SNN的方法,称为Lanesnn,用于使用基于事件的相机输入来检测街道上标记的车道。我们开发了四种以低复杂性和快速响应为特征的小说SNN模型,并使用离线监督的学习规则训练它们。之后,我们将学习的SNNS模型实施并映射到Intel Loihi神经形态研究芯片上。对于损耗函数,我们基于加权二进制交叉熵(WCE)和均方误差(MSE)度量的线性组成而开发了一种新颖的方法。我们的实验结果表明,与联合(IOU)度量的最大交叉点约为0.62,功耗非常低约1W。最好的IOU是通过SNN实现实现的,该实现仅占据Loihi处理器上的36个神经可孔,同时提供低潜伏期少于8 ms识别图像,从而实现实时性能。我们网络提供的IOU措施与最先进的措施相当,但功率消耗为1W。
translated by 谷歌翻译
在当今智能网络物理系统时代,由于它们在复杂的现实世界应用中的最新性能,深度神经网络(DNN)已无处不在。这些网络的高计算复杂性转化为增加的能源消耗,这是在资源受限系统中部署大型DNN的首要障碍。通过培训后量化实现的定点(FP)实现通常用于减少这些网络的能源消耗。但是,FP中的均匀量化间隔将数据结构的位宽度限制为大值,因为需要以足够的分辨率来表示大多数数字并避免较高的量化误差。在本文中,我们利用了关键见解,即(在大多数情况下)DNN的权重和激活主要集中在零接近零,只有少数几个具有较大的幅度。我们提出了Conlocnn,该框架是通过利用来实现节能低精度深度卷积神经网络推断的框架:(1)重量的不均匀量化,以简化复杂的乘法操作的简化; (2)激活值之间的相关性,可以在低成本的情况下以低成本进行部分补偿,而无需任何运行时开销。为了显着从不均匀的量化中受益,我们还提出了一种新颖的数据表示格式,编码低精度二进制签名数字,以压缩重量的位宽度,同时确保直接使用编码的权重来使用新颖的多重和处理 - 积累(MAC)单元设计。
translated by 谷歌翻译
复杂的深层神经网络(例如胶囊网络(CAPSNET))以计算密集型操作为代价表现出较高的学习能力。为了使其在边缘设备上的部署,我们建议利用近似计算来设计诸如SoftMax和Squash等复杂操作的近似变体。在我们的实验中,与确切功能相比,我们评估了通过ASIC设计流实施的设计和量化capsnets的准确性的区域,功耗和关键路径延迟之间的权衡。
translated by 谷歌翻译
在线社交网络由于其在低质量信息的传播中的作用而积极参与删除恶意社交机器人。但是,大多数现有的机器人检测器都是监督分类器,无法捕获复杂机器人的不断发展的行为。在这里,我们提出了Mulbot,这是一种基于多元时间序列(MTS)的无监督的机器人检测器。我们第一次利用从用户时间表中提取的多维时间功能。我们使用LSTM AutoCododer管理多维性,该模块将MTS投射在合适的潜在空间中。然后,我们对此编码表示形式执行聚类步骤,以识别非常相似用户的密集组 - 一种已知的自动化迹象。最后,我们执行一项二进制分类任务,以达到F1得分$ = 0.99 $,表现优于最先进的方法(F1分数$ \ le 0.97 $)。 Mulbot不仅在二进制分类任务中取得了出色的成果,而且我们还在一项新颖且实际上相关的任务中证明了它的优势:检测和分离不同的僵尸网络。在此多级分类任务中,我们实现了F1得分$ = 0.96 $。我们通过估计模型中使用的不同特征的重要性,并通过评估Mulbot推广到新看不见的机器人的能力,从而提出了解决监督机器人探测器的概括性缺陷的解决方案。
translated by 谷歌翻译
大多数最先进的定位算法都依赖于稳健的相对姿势估计和几何验证来获得移动的对象不可知的摄像机在复杂的室内环境中姿势。但是,如果场景包含重复的结构,例如书桌,桌子,盒子或移动的人,则这种方法容易犯错。我们表明,可移动对象包含了不可忽略的本地化误差,并提出了一种新的直接方法,以预测六度自由(6DOF)更加坚固。我们为定位管道INLOC配备了实例分割网络yolact ++。动态对象的口罩用于相对姿势估计步骤和摄像头姿势建议的最终分类中。首先,我们过滤出放置在动态对象的掩模上的匹配。其次,我们跳过了与移动对象相关的区域上查询和合成图像的比较。此过程导致更强大的本地化。最后,我们描述并改善了由合成图像和查询图像之间的基于梯度的比较引起的错误,并发布了新的管道,以模拟MatterPort扫描中具有可移动对象的环境。所有代码均可在github.com/dubenma/d-inlocpp上获得。
translated by 谷歌翻译
在本文中,我们将深度学习文献与非线性因素模型联系起来,并表明深度学习估计可以大大改善非线性加性因子模型文献。我们通过扩展Schmidt-Hieber(2020)定理来提供预期风险的界限,并表明这些上限在一组多个响应变量上是均匀的。我们表明,我们的风险界限并不取决于因素的数量。为了构建资产回报的协方差矩阵估计器,我们开发了深层神经网络中误差协方差矩阵的新型数据依赖性估计器。估算器是指灵活的自适应阈值技术,对创新中的异常值很强。我们证明估计量在光谱规范中是一致的。然后使用该结果,我们显示了协方差矩阵的一致性和收敛速率和资产回报的精确矩阵估计器。两种结果中的收敛速度并不取决于因素的数量,因此我们的收敛性是因子模型文献中的一个新结果,因为这一事实是因素的数量妨碍了更好的估计和预测。除了精确矩阵结果外,即使资产数量大于时间跨度,我们也可以获得我们所有的结果,并且两个数量都在增长。各种蒙特卡洛模拟证实了我们的大型样本发现,并揭示了DNN-FM的卓越精确度,以估计连接因子和可观察变量的真实潜在功能形式,以及与竞争方法相比的协方差和精确矩阵。此外,在大多数情况下,就样本外投资组合策略而言,在样本外预测应用程序中,就样本外投资组合标准偏差和Sharpe比率而言,它的表现优于其他投资组合策略。
translated by 谷歌翻译
现代的天空调查正在产生大量的观测数据,这使经典方法的应用用于分类和分析对象具有挑战性和耗时的。但是,使用自动机器和深度学习方法可能会大大减轻此问题。我们提出了一种新的深度学习工具Ulisse,它从单个原型对象开始,能够识别具有相同形态和光度特性的对象,因此可以创建候选苏西亚列表。在这项工作中,我们专注于在斯隆数字天空调查的星系样本中应用方法来检测AGN候选物,因为光带中主动银河系核(AGN)的鉴定和分类仍然是外层术天文学的挑战性任务。乌里斯(Ulisse)旨在初步探索大型天空调查,直接使用从图像网数据集提取的功能来执行相似性搜索。该方法能够快速识别仅从给定原型的单个图像开始的候选人列表,而无需任何耗时的神经网络训练。我们的实验表明,乌里斯(Ulisse)能够根据宿主星系形态,颜色和中央核源的存在的结合来鉴定AGN候选物,检索效率从21%到65%(包括复合源)(包括复合源),这是基于宿主的候选者。随机猜测基线为12%。我们发现,与具有螺旋形或晚期特性的原型相反,Ulisse在早期型宿主星系中检索AGN最有效。根据这项工作中描述的结果,Ulisse可以是在当前和未来的广阔田野调查(例如欧几里得,LSST等)中选择不同类型的天体物理对象的有前途的工具,该工具每晚都针对数百万个来源。
translated by 谷歌翻译
分布语义是对含义变化和通过语料库变化的定量研究,目前是计算语言学中生产力最高的研究领域之一。近年来,大数据和可再现算法的更广泛可用性促进了其对生活语言的应用。但是,我们可以使用分布语义来研究像古希腊这样有限语料库的语言吗?这种方法能否告诉我们一些关于诸如荷马诗的语言和组成的古典研究中这种烦恼问题的信息?我们的论文将比较涉及古希腊语史诗中透射动词的公式的语义灵活性与非格式液体语料库中的类似动词短语,以检测公式中的独特变化模式。为了解决这个问题,我们提出了Agvalex,这是一种从古希腊依赖树库中自动提取的古希腊的计算价词典。词典包含有关动词及其论点的定量语料库驱动的形态,句法和词汇信息,例如对象,主体和介词短语,并且在古希腊作者的语言研究中有广泛的应用。
translated by 谷歌翻译
我们介绍了Net2Brain,这是一种图形和命令行的用户界面工具箱,用于比较人工深神经网络(DNNS)和人脑记录的代表空间。尽管不同的工具箱仅促进单个功能或仅关注一小部分监督图像分类模型,但Net2Brain允许提取600多个受过培训的DNN的激活,以执行各种视觉相关的任务(例如,语义段,深度估计,深度估计,深度估计,深度估计,估计,深度率,在图像和视频数据集上均具有动作识别等)。该工具箱在这些激活上计算代表性差异矩阵(RDM),并使用代表性相似性分析(RSA),加权RSA(在特定的ROI和探照灯搜索中)将其与大脑记录进行比较。此外,可以在工具箱中添加一个新的刺激和大脑记录数据集以进行评估。我们通过一个示例展示了如何使用Net2Brain的功能和优势来检验认知计算神经科学的假设。
translated by 谷歌翻译
准确且一致的边界分割在肿瘤体积估计及其在医学图像分割领域中的处理中起着重要作用。在全球范围内,肺癌是死亡的主要原因之一,肺结节的早期发现对于早期癌症诊断和患者的存活率至关重要。这项研究的目的是证明DeepHealth Toolkit的可行性,包括PYECVL和PYEDDL库(包括精确的肺结节)。使用PYECVL和PYEDDL在UnitoChest上进行了肺结节分割的实验,以进行数据预处理以及神经网络训练。结果描述了在较宽的直径范围内对肺结节的准确分割,并且在传统检测方法上的准确性更好。本文中使用的数据集和代码可作为基线参考公开提供。
translated by 谷歌翻译