轨迹是不同的滑雪学科的基础。启用此类曲线的工具可以增强培训活动并丰富广播内容。但是,目前可用的解决方案基于地理局部传感器和表面型号。在这篇简短的论文中,我们提出了一种基于视频的方法来重建运动员在其性能期间遍历运动员的点序列。我们的原型由基于深度学习的算法的管道构成,以重建运动员的运动并根据相机的角度来可视化它。这是在没有任何相机校准的情况下为野外的不同滑雪学科实现。我们测试了我们在广播和智能手机捕获的高山滑雪和滑雪跳跃专业竞赛的视频解决方案。实现的定性结果显示了我们解决方案的潜力。
translated by 谷歌翻译
复杂的深层神经网络(例如胶囊网络(CAPSNET))以计算密集型操作为代价表现出较高的学习能力。为了使其在边缘设备上的部署,我们建议利用近似计算来设计诸如SoftMax和Squash等复杂操作的近似变体。在我们的实验中,与确切功能相比,我们评估了通过ASIC设计流实施的设计和量化capsnets的准确性的区域,功耗和关键路径延迟之间的权衡。
translated by 谷歌翻译
Associazione Medici Diabetologi(AMD)收集并管理着全球最大的糖尿病患者记录集合之一,也称为AMD数据库。本文介绍了一个正在进行的项目的初步结果,该项目的重点是人工智能和机器学习技术的应用,以概念化,清洁和分析如此重要且有价值的数据集,目的是提供预测性见解,以更好地支持糖尿病学家的诊断糖尿病学家和治疗选择。
translated by 谷歌翻译
基于得分的扩散模型是一类生成模型,其动力学由将噪声映射到数据中的随机微分方程描述。尽管最近的作品已经开始为这些模型奠定理论基础,但仍缺乏对扩散时间t的作用的分析理解。当前的最佳实践提倡大型T,以确保正向动力学使扩散足够接近已知和简单的噪声分布。但是,对于更好的分数匹配目标和更高的计算效率,应优选较小的t值。从扩散模型的各种解释开始,在这项工作中,我们量化了这一权衡,并提出了一种新方法,通过采用较小的扩散时间来提高培训和采样的质量和效率。实际上,我们展示了如何使用辅助模型来弥合理想和模拟正向动力学之间的间隙,然后进行标准的反向扩散过程。经验结果支持我们的分析;对于图像数据,我们的方法是竞争性W.R.T.根据标准样本质量指标和对数可能的样本。
translated by 谷歌翻译
这项工作探讨了CFGAN的再现性。 CFGan及其模型(Tagrec,MTPR和CRGAN)学会通过使用先前的交互来为TOP-N建议者生成个性化和假的偏好排名。这项工作成功复制了原始纸张中发布的结果,并讨论了CFGAN框架与原始评估中使用的模型之间的某些差异的影响。没有随机噪声和使用真实用户配置文件作为条件向量离开发电机容易发生一个退化的解决方案,其中输出矢量与输入向量相同,因此,表现为简单的AutoEncoder。该工作进一步扩展了比较CFGAN对一系列简单且众所周知的适当优化的基线的实验分析,尽管计算成本高,但仍观察CFGAN并不一致地对抗它们。为确保这些分析的再现性,这项工作描述了实验方法,并发布了所有数据集和源代码。
translated by 谷歌翻译
先进的可穿戴设备越来越多地利用高分辨率多摄像头系统。作为用于处理所得到的图像数据的最先进的神经网络是计算要求的,对于利用第五代(5G)无线连接和移动边缘计算,已经越来越感兴趣,以将该处理卸载到云。为了评估这种可能性,本文提出了一个详细的仿真和评估,用于5G无线卸载,用于对象检测,在一个名为Vis4ion的强大新型智能可穿戴物中,用于盲目损害(BVI)。目前的Vis4ion系统是一种具有高分辨率摄像机,视觉处理和触觉和音频反馈的仪表簿。本文认为将相机数据上载到移动边缘云以执行实时对象检测并将检测结果传输回可穿戴。为了确定视频要求,纸张评估视频比特率和分辨率对物体检测精度和范围的影响。利用与BVI导航相关的标记对象的新街道场景数据集进行分析。视觉评估与详细的全堆栈无线网络仿真结合,以确定吞吐量的分布和延迟,具有来自城市环境中的新高分辨率3D模型的实际导航路径和射线跟踪。为了比较,无线仿真考虑了标准的4G长期演进(LTE)载波和高速度5G毫米波(MMWAVE)载波。因此,该工作提供了对具有高带宽和低延迟要求的应用中的MMWAVE连接的边缘计算的彻底和现实评估。
translated by 谷歌翻译
从限制黑暗部门的暗物质颗粒的生产可能导致许多新颖的实验签名。根据理论的细节,质子 - 质子碰撞中的黑暗夸克生产可能导致颗粒的半衰期:黑暗强度的准直喷雾,其中颗粒碰撞器实验只有一些。实验签名的特征在于,具有与喷射器的可见部件相结合的重建缺失的动量。这种复杂的拓扑对检测器效率低下和错误重建敏感,从而产生人为缺失的势头。通过这项工作,我们提出了一种信号不可知的策略来拒绝普通喷射,并通过异常检测技术鉴定半衰期喷射。具有喷射子结构变量的深度神经自动化器网络作为输入,证明了对分析异常喷射的非常有用。该研究重点介绍了半意射流签名;然而,该技术可以适用于任何新的物理模型,该模型预测来自非SM粒子的喷射器的签名。
translated by 谷歌翻译
AutoEncoders在异常检测中具有高能物理学中的有用应用,特别是对于喷气机 - 在碰撞中产生的颗粒的准直淋浴,例如Cern大型强子撞机的碰撞。我们探讨了基于图形的AutoEncoders,它们在其“粒子云”表示中的喷射器上运行,并且可以在喷气机内的粒子中利用相互依存的依赖性,用于这种任务。另外,我们通过图形神经网络对能量移动器的距离开发可差的近似,这随后可以用作自动化器的重建损耗函数。
translated by 谷歌翻译
粒子流(PF)算法用于通用粒子检测器中,通过组合来自不同子目录的信息来重建碰撞的综合粒子级视图。已经开发出作为机器学习粒子流(MLPF)算法的图形神经网络(GNN)模型,以替代基于规则的PF算法。但是,了解模型的决策并不简单,特别是鉴于设定的预测任务,动态图形构建和消息传递步骤的复杂性。在本文中,我们适应了GNN的层状相关性传播技术,并将其应用于MLPF算法,以衡量相关节点和特征的预测。通过这个过程,我们深入了解模型的决策。
translated by 谷歌翻译
乳腺癌是最常见的癌症,并寄存癌症的妇女的最多死亡人数。结合大规模筛查政策的诊断活动的最新进展显着降低了乳腺癌患者的死亡率。然而,病理学家手动检查病理学家的载玻片是麻烦的,耗时的,并且受到显着的和观察者内的变异性。最近,全幻灯片扫描系统的出现授权了病理幻灯片的快速数字化,并启用了开发数字工作流程。这些进步进一步使利用人工智能(AI)来协助,自动化和增强病理诊断。但是AI技术,尤其是深度学习(DL),需要大量的高质量注释数据来学习。构建此类任务特定的数据集造成了几个挑战,例如数据获取级别约束,耗时和昂贵的注释,以及私人信息的匿名化。在本文中,我们介绍了乳腺癌亚型(BRACS)DataSet,一个大队列的注释血清杂环蛋白和eosin(H&E) - 染色的图像,以促进乳房病变的表征。 BRACS包含547个全幻灯片图像(WSIS),并从WSI中提取4539个兴趣区域(ROI)。每个WSI和各自的ROI都是通过三个董事会认证的病理学家的共识注释为不同的病变类别。具体而言,Bracs包括三种病变类型,即良性,恶性和非典型,其进一步亚级分为七个类别。据我们所知,这是WSI和ROI水平的最大的乳腺癌亚型的附带数据集。此外,通过包括被升值的非典型病变,Bracs提供了利用AI更好地理解其特征的独特机会。
translated by 谷歌翻译