Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译
有效的空间交通管理需要积极识别人造卫星。从观察到的数据中提取对象识别的当前方法需要空间分辨的图像,其限制对低地球轨道中的对象的标识。然而,大多数人造卫星在地球静止轨道上运行在距离的距离中,禁止基于地面的观察者解析空间信息。本文演示了一种物体识别解决方案,利用修改的残余卷积神经网络将远程不变光谱数据映射到对象标识。我们报告了模拟64级卫星问题超过80%的分类精度 - 即使在卫星正在进行恒定,随机重新定位的情况下。由这些结果驱动的天文观察活动,九级问题的精度为72%,平均每类的100个示例,按照模拟预期执行。我们展示了通过辍学,随机重量平均(SWA)和SWA集中的分层贝叶斯推断的应用,以测量空间交通管理中的分类不确定性 - 临界部件,其中日常决策昂贵的空间资产并承担地缘政治后果。
translated by 谷歌翻译
神经网络的越来越大的规模及其越来越多的应用空间对更高的能量和记忆有效的人工智能特定硬件产生了需求。 venues为了缓解主要问题,von neumann瓶颈,包括内存和近记忆架构,以及算法方法。在这里,我们利用磁隧道结(MTJ)的低功耗和固有的二进制操作来展示基于MTJ的无源阵列的神经网络硬件推断。通常,由于设备到装置的变化,写入误差,寄生电阻和非前沿,在性能下将训练的网络模型转移到推动的硬件。为了量化这些硬件现实的效果,我们将300个唯一重量矩阵解决方案的23个唯一的重量矩阵解决方案进行分类,以分类葡萄酒数据集,用于分类准确性和写真保真度。尽管设备不完美,我们可以实现高达95.3%的软件等效精度,并在15 x 15 MTJ阵列中正确调整具有一系列设备尺寸的阵列。此调谐过程的成功表明,需要新的指标来表征混合信号硬件中再现的网络的性能和质量。
translated by 谷歌翻译
人工智能系统越来越涉及持续学习,以实现在系统培训期间不遇到的一般情况下的灵活性。与自治系统的人类互动广泛研究,但在系统积极学习的同时,研究发生了迄今为止发生的互动,并且可以在几分钟内明显改变其行为。在这项试验研究中,我们调查如何在代理商发展能力时如何发展人类和不断学习的预测代理人之间的互动。此外,我们可以比较两个不同的代理架构来评估代理设计中的代表性选择如何影响人工代理交互。我们开发虚拟现实环境和基于时间的预测任务,其中从增强学习(RL)算法增强人类预测中学到的预测。我们评估参与者在此任务中的性能和行为如何在代理类型中不同,使用定量和定性分析。我们的研究结果表明,系统的人类信任可能受到与代理人的早期互动的影响,并且反过来的信任会影响战略行为,但试点研究的限制排除了任何结论的声明。我们将信任作为互动的关键特征,以考虑基于RL的技术在考虑基于RL的技术时,并对这项研究进行了几项建议,以准备更大规模的调查。本文的视频摘要可以在https://youtu.be/ovyjdnbqtwq找到。
translated by 谷歌翻译
用于探索美国国家航空航天局的搜索工具(广告)可以相当丰富和赋予(例如,类似和趋势的运营商),但研究人员尚未允许完全杠杆语义搜索。例如,对“普朗克任务的结果”查询应该能够区分普朗克(人,任务,常量,机构和更多)的所有各种含义,而无需从用户进一步澄清。在广告中,我们正在将现代机器学习和自然语言处理技术应用于我们最近的天文出版物的数据集,以培训Astrobert,这是一种基于Google研究的深刻语境语言模型。使用AstrBert,我们的目标是丰富广告数据集并提高其可发现性,特别是我们正在开发自己的命名实体识别工具。我们在这里展示我们初步的结果和经验教训。
translated by 谷歌翻译
高分辨率气象雷达图像的可用性是有效的预测和决策。在超越传统雷达覆盖范围之外,生成模型已成为一种重要的合成能力,融合更普遍的数据来源,例如卫星图像和数值天气模型,进入准确的雷达样产品。在这里,我们展示了使用量子辅助模型来增强传统卷积神经网络的方法,用于全球合成天气雷达中的生成任务。我们表明Quantum Kernels原则上可以根据相关底层数据上的古典学习机来表现出基本上更复杂的任务。我们的结果建立了合成气象雷达作为量子计算能力的有效启发式基准,并在高影响力的相关问题上设定了详细量子优势基准测试的阶段。
translated by 谷歌翻译
最近已经提出了与紧急磁化动态的互连磁纳环阵列用于储层计算应用,但是对于它们进行计算有用,必须可以优化其动态响应。在这里,我们使用一种现象学模型来证明可以通过调整使用旋转磁场将数据的缩放和输入速率控制到系统中的超级参数来优化这些储存器。我们使用任务独立的指标来评估每组上的这些超参数的戒指的计算能力,并展示这些指标如何直接关联与口头和书面识别任务中的性能相关联。然后,我们通过扩展储库的输出来包括环阵列磁态的多个并发度量,可以进一步改善这些度量。
translated by 谷歌翻译
在面孔和机构的3D生成模型中学习解除一致,可解释和结构化的潜在代表仍然是一个开放的问题。当需要对身份特征的控制时,问题特别严重。在本文中,我们提出了一种直观但有效的自我监督方法来训练3D形变形自动化器(VAE),鼓励身份特征的解开潜在表示。通过在不同形状上交换任意特征来造成迷你批处理允许定义利用潜在表示中已知差异和相似性的损耗功能。在3D网眼上进行的实验结果表明,最先进的潜在解剖学方法无法解散面部和身体的身份特征。我们所提出的方法适当地解耦了这些特征的产生,同时保持了良好的表示和重建能力。
translated by 谷歌翻译
尽管辐射学家常规使用电子健康记录(EHR)数据来形成临床历史并通知图像解释,但医学成像的大多数深度学习架构是单向的,即,它们只能从像素级信息中学习特征。最近的研究揭示了如何从像素数据中恢复种族,仅突出显示模型中的严重偏差的可能性,这未能考虑人口统计数据和其他关键患者属性。然而,缺乏捕获临床背景的成像数据集,包括人口统计学和纵向病史,具有偏远的多式化医学成像。为了更好地评估这些挑战,我们呈现RadFusion,一种多式联运,基准数据集1794名患者的相应EHR数据和高分辨率计算断层扫描(CT)扫描标记为肺栓塞。我们评估了几个代表性的多模式融合模型,并在受保护的亚组中,例如性别,种族/种族,年龄的年龄。我们的研究结果表明,集成成像和EHR数据可以提高分类性能和鲁棒性,而不会在人口群之间的真正阳性率下引入大的差异。
translated by 谷歌翻译
在神经形态计算中,人工突触提供了一种基于来自神经元的输入来设置的多重导电状态,类似于大脑。可能需要超出多重权重的突触的附加属性,并且可以取决于应用程序,需要需要从相同材料生成不同的突触行为。这里,我们基于使用磁隧道结和磁畴壁的磁性材料测量人造突触。通过在单个磁隧道结下面的畴壁轨道中制造光刻槽口,我们实现了4-5个稳定的电阻状态,可以使用自旋轨道扭矩电气可重复控制。我们分析几何形状对突触行为的影响,表明梯形装置具有高可控性的不对称性重量,而直线装置具有较高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中以显示特定于应用程序突触函数的有用性。实施应用于流式的时尚 - MNIST数据的人工神经网络,我们表明梯形磁突出可以用作高效在线学习的元塑功能。为CiFar-100图像识别实施卷积神经网络,我们表明直流突触由于其电阻水平的稳定性而达到近乎理想的推理精度。这项工作显示多重磁突触是神经形态计算的可行技术,并为新兴人工突触技术提供设计指南。
translated by 谷歌翻译