在这项工作中,我们详细描述了深度学习和计算机视觉如何帮助检测AirTender系统的故障事件,AirTender系统是售后摩托车阻尼系统组件。监测飞行员运行的最有效方法之一是在其表面上寻找油污渍。从实时图像开始,首先在摩托车悬架系统中检测到Airtender,然后二进制分类器确定Airtender是否在溢出油。该检测是在YOLO5架构的帮助下进行的,而分类是在适当设计的卷积神经网络油网40的帮助下进行的。为了更清楚地检测油的泄漏,我们用荧光染料稀释了荧光染料,激发波长峰值约为390 nm。然后用合适的紫外线LED照亮飞行员。整个系统是设计低成本检测设置的尝试。船上设备(例如迷你计算机)被放置在悬架系统附近,并连接到全高清摄像头框架架上。板载设备通过我们的神经网络算法,然后能够将AirTender定位并分类为正常功能(非泄漏图像)或异常(泄漏图像)。
translated by 谷歌翻译
We develop Bayesian neural networks (BNNs) that permit to model generic nonlinearities and time variation for (possibly large sets of) macroeconomic and financial variables. From a methodological point of view, we allow for a general specification of networks that can be applied to either dense or sparse datasets, and combines various activation functions, a possibly very large number of neurons, and stochastic volatility (SV) for the error term. From a computational point of view, we develop fast and efficient estimation algorithms for the general BNNs we introduce. From an empirical point of view, we show both with simulated data and with a set of common macro and financial applications that our BNNs can be of practical use, particularly so for observations in the tails of the cross-sectional or time series distributions of the target variables.
translated by 谷歌翻译
数据的表示对于机器学习方法至关重要。内核方法用于丰富特征表示,从而可以更好地概括。量子内核有效地实施了在量子系统的希尔伯特空间中编码经典数据的有效复杂的转换,甚至导致指数加速。但是,我们需要对数据的先验知识来选择可以用作量子嵌入的适当参数量子电路。我们提出了一种算法,该算法通过组合优化过程自动选择最佳的量子嵌入过程,该过程修改了电路的结构,更改门的发生器,其角度(取决于数据点)以及各种门的QUBIT行为。由于组合优化在计算上是昂贵的,因此我们基于均值周围的核基质系数的指数浓度引入了一个标准,以立即丢弃任意大部分的溶液,这些溶液被认为性能较差。与基于梯度的优化(例如可训练的量子内核)相反,我们的方法不受建筑贫瘠的高原影响。我们已经使用人工和现实数据集来证明相对于随机生成的PQC的方法的提高。我们还比较了不同优化算法的效果,包括贪婪的局部搜索,模拟退火和遗传算法,表明算法选择在很大程度上影响了结果。
translated by 谷歌翻译
时间序列预测是一个重要的问题,具有许多现实世界的应用。深度神经网络的合奏最近实现了令人印象深刻的预测准确性,但是在许多现实世界中,如此大的合奏是不切实际的。变压器模型已成功应用于各种具有挑战性的问题。我们建议对原始变压器体系结构进行新颖的改编,重点是时间序列预测的任务,称为持久性初始化。该模型通过使用与残留跳过连接的乘法门控机制初始化为幼稚的持久性模型。我们使用具有REZERO标准化和旋转位置编码的解码器变压器,但适应适用于任何自动回归神经网络模型。我们评估了有关挑战性M4数据集的拟议体系结构,与基于合奏的方法相比,取得了竞争性能。我们还将最近提议的变压器模型进行比较,以预测时间序列,显示了M4数据集中的卓越性能。广泛的消融研究表明,持久性初始化会导致更好的性能和更快的收敛性。随着模型的大小的增加,只有我们提出的适应性增长的模型。我们还进行了一项额外的消融研究,以确定正常化和位置编码的选择的重要性,并发现旋转编码的使用和REZERO归一化对于良好的预测性能至关重要。
translated by 谷歌翻译
最先进的深度学习模型通常经过大量昂贵的标签培训数据培训。但是,需要详尽的手动注释可能会降低该模型在有限标签制度中的普遍性。半监督的学习和无监督的学习提供了有希望的范式,可以从大量未标记的视觉数据中学习。这些范式的最新进展表明,利用未标记的数据来改善模型概括并提供更好的模型初始化的良好好处。在这项调查中,我们从统一的角度回顾了有关半监督学习(SSL)和无监督学习(UL)的最新高级深度学习算法(SSL)。为了对这些领域的最先进的整体了解,我们提出了统一的分类法。我们将现有代表性SSL和UL分类为全面而有见地的分析,以在不同的计算机视觉任务中的不同学习场景和应用中突出其设计理由。最后,我们讨论了SSL和UL的新兴趋势和公开挑战,以阐明未来的关键研究方向。
translated by 谷歌翻译
对国际气候变化小组(IPCC)的第六次评估指出,“过去十年(2010-2019)的累积净二氧化碳排放量与剩下的11个碳预算可能会限制为1.5C(中等信心)大约相同)。”这样的报告直接培养了公众的话语,但是诸如信念和信心程度之类的细微差别常常失去。在本文中,我们提出了一个正式的帐户,以允许在抽象论证设置中使用这种信念和相关的信心来标记论证。与概率论证中的其他建议不同,我们关注对Sato分布语义的选择构建的概率推断的任务,Sato的分布语义已被证明涵盖了包括贝叶斯网络的语义在内的各种情况。从有关此类语义的大量文献中借用,我们研究了如何在考虑不确定概率的情况下在实践中处理此类任务,并与现有的概率论点的现有建议讨论联系。
translated by 谷歌翻译
在这项工作中,我们研究了沉重的尾部噪声下的随机亚级别方法的高概率边界。在这种情况下,仅假定噪声具有有限的方差,而不是次高斯的分布,众所周知,标准亚级别方法具有很高的概率边界。我们分析了投影的随机亚级别方法的剪裁版本,其中每当具有大规范时,亚级别估计值都会被截断。我们表明,这种剪裁策略既导致了许多经典平均方案的任何时间和有限的地平线界限。初步实验显示以支持该方法的有效性。
translated by 谷歌翻译
可以与其他代理人互动以完成给定任务的自主代理的发展是人工智能和机器学习研究的核心领域。为了实现这一目标,自主代理研究小组开发了用于自主系统控制的新型机器学习算法,特别关注深度强化学习和多代理强化学习。研究问题包括可扩展的协调代理政策和代理间沟通;从有限观察的情况下对其他代理的行为,目标和组成的推理;以及基于内在动机,课程学习,因果推断和代表性学习的样品学习。本文概述了该小组正在进行的研究组合,并讨论了未来方向的开放问题。
translated by 谷歌翻译
人类在需要快速传达对象信息的游戏中显示出高级的抽象功能。他们将消息内容分解为多个部分,并以可解释的协议将它们传达。为了为机器提供这种功能,我们提出了基于原始的草图抽象任务,其目标是在预算影响下使用一组固定的绘图原始图表示草图。为了解决这项任务,我们的原始匹配网络(PMN)以自我监督的方式学习了草图的可解释抽象。具体而言,PMN将草图的每个笔划都映射到给定集中最相似的原始性,预测了仿射转换将所选原始词与目标冲程对齐的仿射转换。我们学习了端到端的这一笔触至关重要的映射,当原始草图精确地用预测的原语重建时,距离转换损失是最小的。我们的PMN抽象在经验上取得了素描识别和基于草图的图像检索的最高性能,同时也是高度可解释的。这为草图分析打开了新的可能性,例如通过提取定义对象类别的最相关的原始图来比较草图。代码可在https://github.com/explainableml/sketch-primitives上找到。
translated by 谷歌翻译
预测过程分析已成为组织的基本援助,从而为其流程提供在线运营支持。但是,需要向流程利益相关者提供解释为什么预测给定流程执行以某种方式行事的原因。否则,他们将不太可能相信预测性监测技术,从而采用它。本文提出了一个预测分析框架,该框架还具有基于Shapley值的游戏理论的解释功能。该框架已在IBM Process采矿套件中实施,并为业务用户商业化。该框架已在现实生活事件数据上进行了测试,以评估预测的质量和相应的评估。特别是,已经执行了用户评估,以了解系统提供的解释是否可以使流程利益相关者可理解。
translated by 谷歌翻译