Adaptive partial linear beamforming meets the need of 5G and future 6G applications for high flexibility and adaptability. Choosing an appropriate tradeoff between conflicting goals opens the recently proposed multiuser (MU) detection method. Due to their high spatial resolution, nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity. However, a dramatic decrease in performance can be expected in high mobility scenarios because they are very susceptible to changes in the wireless channel. The robustness of linear filters is required, considering these changes. One way to respond appropriately is to use online machine learning algorithms. The theory of algorithms based on the adaptive projected subgradient method (APSM) is rich, and they promise accurate tracking capabilities in dynamic wireless environments. However, one of the main challenges comes from the real-time implementation of these algorithms, which involve projections on time-varying closed convex sets. While the projection operations are relatively simple, their vast number poses a challenge in ultralow latency (ULL) applications where latency constraints must be satisfied in every radio frame. Taking non-orthogonal multiple access (NOMA) systems as an example, this paper explores the acceleration of APSM-based algorithms through massive parallelization. The result is a GPUaccelerated real-time implementation of an orthogonal frequency-division multiplexing (OFDM)based transceiver that enables detection latency of less than one millisecond and therefore complies with the requirements of 5G and beyond. To meet the stringent physical layer latency requirements, careful co-design of hardware and software is essential, especially in virtualized wireless systems with hardware accelerators.
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
近年来,深度加固学习(DRL)已经成功地进入了复杂的决策应用,例如机器人,自动驾驶或视频游戏。在寻找更多采样高效的算法中,有希望的方向是利用尽可能多的外部偏离策略数据。这种数据驱动方法的一个主题是从专家演示中学习。在过去,已经提出了多种想法来利用添加到重放缓冲区的示范,例如仅在演示中预先预订或最小化额外的成本函数。我们提出了一种新的方法,能够利用任何稀疏奖励环境中在线收集的演示和剧集,以任何违规算法在线。我们的方法基于奖励奖金,给出了示范和成功的剧集,鼓励专家模仿和自模仿。首先,我们向来自示威活动的过渡提供奖励奖金,以鼓励代理商符合所证明的行为。然后,在收集成功的剧集时,我们将其在将其添加到重播缓冲区之前与相同的奖金转换,鼓励代理也与其先前的成功相匹配。我们的实验专注于操纵机器人,特别是在模拟中有6个自由的机器人手臂的三个任务。我们表明,即使在没有示范的情况下,我们基于奖励重新标记的方法可以提高基础算法(SAC和DDPG)对这些任务的性能。此外,集成到我们的方法中的两种改进来自以前的作品,允许我们的方法优于所有基线。
translated by 谷歌翻译
假设我们在$ \ mathbb {r} ^ d $和predictor x中的响应变量y在$ \ mathbb {r} ^ d $,以便为$ d \ geq 1 $。在置换或未解释的回归中,我们可以访问x和y上的单独无序数据,而不是在通常回归中的(x,y)-pabes上的数据。到目前为止,在文献中,案件$ d = 1 $已收到关注,请参阅例如近期的纸张和杂草[信息和推理,8,619--717]和Balabdaoui等人。 [J.马赫。学习。 res,22(172),1-60]。在本文中,我们考虑使用$ d \ geq 1 $的一般多变量设置。我们表明回归函数的周期性单调性的概念足以用于置换/未解释的回归模型中的识别和估计。我们在允许的回归设置中研究置换恢复,并在基于Kiefer-WolfoItz的基于代索的计算高效且易用算法[ANN。数学。统计部。,27,887--906]非参数最大似然估计和来自最佳运输理论的技术。我们在高斯噪声的相关均方方向误差误差上提供显式上限。与之前的案件的工作$ d = 1 $一样,置换/未解释的设置涉及潜在的解卷积问题的慢速(对数)收敛率。数值研究证实了我们的理论分析,并表明所提出的方法至少根据上述事先工作中的方法进行了比例,同时在计算复杂性方面取得了大量减少。
translated by 谷歌翻译
MRI扫描时间减少通常通过并行成像方法实现,通常基于逆图像空间(A.K.A.K空间)的均匀下采样和具有多个接收器线圈的同时信号接收。 Grappa方法通过跨越所有线圈的相邻获取信号的线性组合来插入缺失的k空间信号,并且可以通过k空间中的卷积来描述。最近,介绍了一种称为RAKI的更广泛的方法。 Raki是一种深入学习方法,将Grappa推广到附加的卷积层,在此期间应用非线性激活功能。这使得卷积神经网络能够实现缺失信号的非线性估计。与Grappa类似,Raki中的卷积核心使用从自动校准信号(ACS)获得的特定训练样本进行培训。 Raki与Grappa相比提供了卓越的重建质量,然而,由于其未知参数的数量增加,通常需要更多的AC。为了克服这一限制,本研究调查了训练数据对标准2D成像重建质量的影响,特别关注其金额和对比信息。此外,评估迭代k空间插值方法(araki),包括通过初始的格拉普重建训练数据增强,并通过迭代培训改进卷积滤波器。仅使用18,20和25个ACS线(8%),通过抑制在加速度因子R = 4和r = 5时发生的残余人工制品,并且与Grappa相比,通过定量质量指标加下划线,产生强烈的噪声抑制。与相约束的组合进一步改善。此外,在预扫描校准的情况下,伊拉克基显示比GRAPPA和RAKI更好的性能,并且在训练和缺乏采样的数据之间强烈不同的对比度。
translated by 谷歌翻译
风险(OAR)的器官的分割是具有图像引导放射治疗的癌症治疗所需的前提。因此,分割任务的自动化是高临床相关性的。基于深度学习(DL)的医学图像分割是目前最成功的方法,但遭受背景类别和解剖学上给定的器官尺寸差异,这在头部和颈部(汉)区域中最严重。为了解决汉族地区特定的类别不平衡问题我们首先优化当前最好的通用分割框架的补丁大小,基于介绍的类不平衡测量,第二,介绍了课堂自适应骰子损失补偿高度不平衡的设置。补丁大小和损耗功能都是对类别不平衡有直接影响的参数,并且它们的优化导致骰子得分的3 \%增加了95%Hausdorff距离的22%,最后达到0.8美元\ PM0.15 $和3.17美元\ PM1.7 $ mm用于使用单个和简单的神经网络分割七汉机关的分割。补丁大小优化和类自适应骰子损耗均可在基于DL的基于DL的分段方法中简单集成,并允许提高类别不平衡分段任务的性能。
translated by 谷歌翻译
机器学习,在深入学习的进步,在过去分析时间序列方面表现出巨大的潜力。但是,在许多情况下,可以通过将其结合到学习方法中可能改善预测的附加信息。这对于由例如例如传感器位置的传感器网络而产生的数据至关重要。然后,可以通过通过图形结构建模,以及顺序(时间)信息来利用这种空间信息。适应深度学习的最新进展在各种图形相关任务中表明了有希望的潜力。但是,这些方法尚未在很大程度上适用于时间序列相关任务。具体而言,大多数尝试基本上围绕空间 - 时间图形神经网络巩固了时间序列预测的小序列长度。通常,这些架构不适合包含大数据序列的回归或分类任务。因此,在这项工作中,我们使用图形神经网络的好处提出了一种能够在多变量时间序列回归任务中处理这些长序列的架构。我们的模型在包含地震波形的两个地震数据集上进行测试,其中目标是预测在一组站的地面摇动的强度测量。我们的研究结果表明了我们的方法的有希望的结果,这是深入讨论的额外消融研究。
translated by 谷歌翻译
维数减少方法发现了巨大的应用程序作为不同科学领域的可视化工具。虽然存在许多不同的方法,但它们的性能通常不足以提供对许多当代数据集的快速深入了解,并且无监督的使用方式可防止用户利用数据集探​​索和微调可视化质量的细节方法。我们呈现开花,一种高性能半监督维度减少软件,用于具有数百万个单独的数据点的高维数据集的交互式用户可信可视化。 Blossom在GPU加速实施的EMBEDSOM算法的实现上,由几个基于地标的算法补充,用于将无监督模型学习算法与用户监督联系起来。我们展示了开花在现实数据集上的应用,在那里它有助于产生高质量的可视化,该可视化包含用户指定的布局并专注于某些功能。我们认为,半监督的维度减少将改善单细胞细胞谱系等科学领域的数据可视化可能性,并为数据集勘探和注释提供了新的方向的快速有效的基础方法。
translated by 谷歌翻译
积极推论的中央概念是,物理系统参数概率的内部状态在外部世界的状态下衡量。这些可以被视为代理人的信仰,以贝叶斯先前或后部表示。在这里,我们开始发展一般理论,这将告诉我们何时适合将国家解释为以这种方式代表信仰。我们专注于系统可以被解释为执行贝叶斯滤波或贝叶斯推断的情况。我们使用类别理论的技术提供对存在这种解释的方法的形式定义。
translated by 谷歌翻译
放射学报告含有在其解释图像中被放射科学家记录的多样化和丰富的临床异常。放射发现的综合语义表示将使广泛的次要使用应用来支持诊断,分类,结果预测和临床研究。在本文中,我们提出了一种新的放射学报告语料库,注释了临床调查结果。我们的注释模式捕获了可观察到的病理发现的详细说明(“病变”)和其他类型的临床问题(“医学问题”)。该模式使用了基于事件的表示来捕获细粒细节,包括断言,解剖学,特征,大小,计数等。我们的黄金标准语料库包含总共500个注释的计算机断层扫描(CT)报告。我们利用两个最先进的深度学习架构提取了触发器和论证实体,包括伯特。然后,我们使用基于BERT的关系提取模型预测触发器和参数实体(称为参数角色)之间的连接。我们使用预先从我们的机构的300万放射学报告预先培训的BERT模型实现了最佳提取性能:90.9%-93.4%f1用于查找触发器的触发器72.0%-85.6%f1,用于参数角色。为了评估型号的概括性,我们使用了从模拟胸部X射线(MIMIC-CXR)数据库中随机采样的外部验证。该验证集的提取性能为95.6%,用于发现触发器和参数角色的79.1%-89.7%,表明模型与具有不同的成像模型的跨机构数据一致。我们从模拟CXR数据库中的所有放射学报告中提取了查找事件,并为研究界提供了提取。
translated by 谷歌翻译