我们考虑多用户无线网络中的资源管理问题,可以将其视为优化网络范围的公用事业功能,这受到整个网络用户长期平均性能的限制。我们提出了一种以国家功能为算法来解决上述无线电资源管理(RRM)问题的算法,在此问题中,与瞬时网络状态相同,RRM策略将其作为输入的双重变量集,这些变量对应于约束,这些变量取决于多少,这些变量取决于多少,这些变量取决于多少。执行过程中违反约束。从理论上讲,我们表明,拟议的国有算法会导致可行且近乎最佳的RRM决策。此外,着重于使用图神经网络(GNN)参数化的无线功率控制问题,我们证明了所提出的RRM算法优于基线方法的优越性,跨基线方法。
translated by 谷歌翻译
在过去几年中,深度学习的巨大进展已导致了我们道路上有自动驾驶汽车的未来。然而,他们的感知系统的性能在很大程度上取决于使用的培训数据的质量。由于这些系统通常仅覆盖所有对象类别的一部分,因此自主驾驶系统将面临,因此这种系统在处理意外事件方面努力。为了安全地在公共道路上运行,对未知类别的对象的识别仍然是一项至关重要的任务。在本文中,我们提出了一条新的管道来检测未知物体。我们没有专注于单个传感器模式,而是通过以顺序结合最先进的检测模型来利用LiDAR和相机数据。我们在Waymo开放感知数据集上评估我们的方法,并指出当前的异常检测研究差距。
translated by 谷歌翻译
计算模型已成为定量科学中的强大工具,以了解随时间发展的复杂系统的行为。但是,它们通常包含可能无法从理论中获得的值,但需要从数据中推断出其值。社会科学,经济学或计算流行病学中的模型尤其如此。然而,许多当前参数估计方法在数学上涉及,并且运行速度慢。在本文中,我们提出了一种计算简单且快速的方法,可以使用神经微分方程检索模型参数的准确概率密度。我们提出了一条管道,该管道包含多代理模型,该模型充当了普通或随机微分方程系统的前向求解器以及一个神经网络,然后从模型生成的数据中提取参数。这两个组合创建了一个强大的工具,即使对于非常大的系统,也可以快速估计模型参数的密度。我们演示了感染传播的SIR模型的合成时间序列数据的方法,并对网络上的Harris-Wilson经济活动模型进行了深入的分析,代表了非凸面问题。对于后者,我们将我们的方法应用于大伦敦的合成数据和经济活动数据。我们发现,我们的方法比先前使用经典技术对同一数据集进行的研究更准确地校准了数量级,同时运行的速度快于195至390倍。
translated by 谷歌翻译
最大平均差异(MMD)(例如内核Stein差异(KSD))已成为广泛应用的中心,包括假设测试,采样器选择,分布近似和变异推断。在每种情况下,这些基于内核的差异度量都需要(i)(i)将目标p与其他概率度量分开,甚至(ii)控制弱收敛到P。在本文中,我们得出了新的足够和必要的条件,以确保(i) (ii)。对于可分开的度量空间上的MMD,我们表征了那些将BOCHNER嵌入量度分开的内核,并引入了简单条件,以将所有措施用无限的内核分开,并控制与有界内核的收敛。我们在$ \ mathbb {r}^d $上使用这些结果来实质性地扩大了KSD分离和收敛控制的已知条件,并开发了已知的第一个KSD,以恰好将弱收敛到P。我们的假设检验,测量和改善样本质量以及用Stein变异梯度下降进行抽样的结果。
translated by 谷歌翻译
自动化问题生成是实现英语理解评估个性化的重要方法。最近,基于变压器的预审前的语言模型已经证明了从上下文段落中提出适当问题的能力。通常,使用基于N-Gram的指标或手动定性评估对手动生成的问题的参考组进行评估。在这里,我们专注于完全自动化的多项选择问题生成(MCQG)系统,其中必须从上下文段落中生成问题和可能的答案。应用基于N-Gram的方法对于这种形式的系统来说是一项挑战,因为参考集不太可能捕获所有可能的问题和答案选项。相反,手动评估的尺度较差,对于MCQG系统开发而言是昂贵的。在这项工作中,我们提出了一套绩效标准,以评估产生的多项选择问题的不同方面。这些品质包括:语法正确性,答复性,多样性和复杂性。描述了这些指标中每个指标的初始系统,并对标准的多项选择阅读理解科目进行了单独评估。
translated by 谷歌翻译
自动驾驶汽车必须能够可靠地处理不利的天气条件(例如,雪地)安全运行。在本文中,我们研究了以不利条件捕获的转动传感器输入(即图像)的想法,将其下游任务(例如,语义分割)可以达到高精度。先前的工作主要将其作为未配对的图像到图像翻译问题,因为缺乏在完全相同的相机姿势和语义布局下捕获的配对图像。虽然没有完美对准的图像,但可以轻松获得粗配上的图像。例如,许多人每天在好天气和不利的天气中驾驶相同的路线;因此,在近距离GPS位置捕获的图像可以形成一对。尽管来自重复遍历的数据不太可能捕获相同的前景对象,但我们认为它们提供了丰富的上下文信息来监督图像翻译模型。为此,我们提出了一个新颖的训练目标,利用了粗糙的图像对。我们表明,我们与一致的训练方案可提高更好的图像翻译质量和改进的下游任务,例如语义分割,单眼深度估计和视觉定位。
translated by 谷歌翻译
平行操纵器的配置歧管比串行操纵器表现出更多的非线性。从定性上讲,它们可以看到额外的褶皱。通过将这种歧管投射到工程相关性的空间上,例如输出工作区或输入执行器空间,这些折叠式的边缘呈现出表现非滑动行为的边缘。例如,在五杆链接的全局工作空间边界内显示了几个局部工作空间边界,这些边界仅限于该机制的某些输出模式。当专门研究这些投影而不是配置歧管本身时,这种边界的存在在输入和输出投影中都表现出来。特别是,非对称平行操纵器的设计已被其输入和输出空间中的外来投影所困扰。在本文中,我们用半径图表示配置空间,然后通过使用同型延续来量化传输质量来解决每个边缘。然后,我们采用图路径计划器来近似于避免传输质量区域的配置点之间的大地测量。我们的方法会自动生成能够在非邻居输出模式之间过渡的路径,该运动涉及示波多个工作空间边界(局部,全局或两者)。我们将技术应用于两个非对称五杆示例,这些示例表明如何通过切换输出模式来选择工作空间的传输属性和其他特征。
translated by 谷歌翻译
多限制攀岩机器人的运动计划必须考虑机器人的姿势,联合扭矩,以及它如何使用接触力与环境相互作用。本文着重于使用非传统运动来探索不可预测的环境(例如火星洞穴)的机器人运动计划。我们的机器人概念Reachbot使用可扩展和可伸缩的动臂作为四肢,在攀爬时实现了大型可伸缩度工作区。每个可扩展的动臂都由旨在抓住岩石表面的微生物抓地力封顶。 Reachbot利用其大型工作空间来绕过障碍物,裂缝和挑战地形。我们的计划方法必须具有多功能性,以适应可变的地形特征和鲁棒性,以减轻用刺抓握随机性质的风险。在本文中,我们引入了一种图形遍历算法,以根据适用于握把的可用地形特征选择一个离散的grasps序列。该离散的计划是由一个解耦运动计划者互补的,该计划者使用基于抽样的计划和顺序凸面编程的组合来考虑身体运动和最终效应器运动的交替阶段,以优化单个阶段。我们使用运动规划师在模拟的2D洞穴环境中计划轨迹,至少有95%的成功概率,并在基线轨迹上表现出改善的鲁棒性。最后,我们通过对2D平面原型进行实验来验证运动计划算法。
translated by 谷歌翻译
神经场通过将坐标输入映射到采样值来模型信号。从视觉,图形到生物学和天文学的许多领域,它们正成为越来越重要的主链体系结构。在本文中,我们探讨了这些网络中常见的调理机制之间的差异,这是将神经场从信号的记忆转移到概括的基本要素,其中共同建模了位于歧管上的一组信号。特别是,我们对这些机制的缩放行为感兴趣,以对日益高维的调理变量感兴趣。正如我们在实验中显示的那样,高维条件是建模复杂数据分布的关键,因此,确定哪种体系结构在处理此类问题时最能实现哪种选择。为此,我们运行了使用串联,超网络和基于注意力的调理策略对2D,3D和4D信号进行建模的实验,这是文献中尚未进行的必要但费力的努力。我们发现,基于注意力的条件在各种环境中的其他方法都优于其他方法。
translated by 谷歌翻译
最近在无监督学习框架中为多元时间表制定代表性的努力。这种表示可以证明在活动识别,健康监测和异常检测等任务中有益。在本文中,我们考虑了一个设置,在该设置中,我们在动态图中观察到每个节点处的时间序列。我们提出了一个名为GraphTNC的框架,用于无监督的图表和时间序列的联合表示。我们的方法采用了对比度学习策略。基于一个假设,即时间序和图演进动力学是平滑的,我们确定了信号表现出近似平稳性的本地时间窗口。然后,我们训练一个编码,该编码允许在社区内分布非邻居信号的分布。我们首先使用合成数据证明了我们提出的框架的性能,随后我们证明它可以证明对使用现实世界数据集的分类任务有益。
translated by 谷歌翻译