计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
本文提出了一种新方法,用于在大规模语言数据集中自动检测具有词汇性别的单词。目前,对自然语言处理中性别偏见的评估取决于手动编译的性别表达词典,例如代词('He','She'等)和具有词汇性别的名词(“母亲”,“男友”,''女警等)。但是,如果没有定期更新这些列表的手动汇编,则可以导致静态信息,并且通常涉及单个注释者和研究人员的价值判断。此外,列表中未包含的术语不超出分析范围。为了解决这些问题,我们设计了一种基于词典的可扩展方法,以自动检测词汇性别,该性别可以提供具有高覆盖范围的动态,最新分析。我们的方法在确定从Wikipedia样本中随机检索的名词的词汇性别以及在先前研究中使用的性别单词列表中进行测试时达到了超过80%的精度。
translated by 谷歌翻译
深度重新结合因实现最新的机器学习任务而被认可。但是,这些体系结构的出色性能取决于培训程序,需要精心制作以避免消失或爆炸梯度,尤其是随着深度$ l $的增加。关于如何减轻此问题,尚无共识,尽管广泛讨论的策略在于将每一层的输出缩放为$ \ alpha_l $。我们在概率环境中显示标准I.I.D.初始化,唯一的非平凡动力学是$ \ alpha_l = 1/\ sqrt {l} $(其他选择导致爆炸或身份映射)。该缩放因子在连续的时间限制中对应于神经随机微分方程,这与广泛的解释相反,即深度重新连接是神经普通微分方程的离散化。相比之下,在后一种制度中,具有特定相关初始化和$ \ alpha_l = 1/l $获得稳定性。我们的分析表明,与层指数的函数之间的缩放比例和规律性之间存在很强的相互作用。最后,在一系列实验中,我们表现出由这两个参数驱动的连续范围,这在训练之前和之后会共同影响性能。
translated by 谷歌翻译
播客已经出现在大量消耗的在线内容中,特别是由于生产手段的可访问性和通过大型流平台进行缩放分布。分类系统和信息访问技术通常使用主题作为组织或导航播客集合的主要方式。然而,用主题注释播客仍然是非常有问题的,因为分配的编辑类型是广泛的,异构或误导性的,或者因为数据挑战(例如,MetaData文本短,嘈杂的成绩单)。在这里,我们使用主题建模技术来评估从播客元数据,标题和描述中发现相关主题的可行性。我们还提出了一种新的策略来利用命名实体(NES),通常存在于播客元数据中,以非负矩阵分解(NMF)主题建模框架。我们在Spotify和iTunes和Deezer中的两个现有数据集的实验,该数据来自提供播客目录的新数据集,显示我们所提出的文档表示Neice,导致基于基线的主题连贯性。我们释放了结果的实验​​性再现性的代码。
translated by 谷歌翻译
我们使用神经语义解析方法解决对大知识图表的弱监督会议问题的问题。我们介绍了一种新的逻辑表单(LF)语法,可以在图中模拟各种查询,同时仍然足够简单以有效地生成监督数据。我们的变换器的模型将类似于输入的JSON的结构,允许我们轻松地结合知识图形和会话环境。该结构化输入转换为嵌入列表,然后馈送到标准注意图层。我们验证了我们的方法,无论是在语法覆盖范围和LF执行准确性方面,在两个公开可用的数据集,CSQA和Chamquestions,都在Wikidata接地。在CSQA上,我们的方法将覆盖范围从80美元的价格增加到96.2 \%$ 75.6 \%$ 75.6 \%$ 75.6 \%$,关于以前的最先进的结果。在CuncQuestions上,我们对最先进的竞争结果实现了竞争力。
translated by 谷歌翻译