域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
最近集成了多源胸X射线数据集以改进自动诊断的趋势提出了模型学会利用源特定的相关性以通过识别图像的源域而不是医学病理来提高性能。我们假设这种效果由源区,即对应于源的疾病的患病率来强制执行并利用标记 - 不平衡。因此,在这项工作中,我们彻底研究了Lable-angalance对多源训练的影响,以便在广泛使用的Chestx-ray14和Chexpert数据集上进行肺炎检测任务。结果强调并强调了使用更忠实和透明的自解释模型进行自动诊断的重要性,从而实现了对杂志学习的固有检测。他们进一步说明了在确保标签平衡的源域数据集时可以显着降低学习虚假相关的这种不希望的效果。
translated by 谷歌翻译
我们提出了一种变分贝叶斯比例危险模型,用于预测和可变选择的关于高维存活数据。我们的方法基于平均场变分近似,克服了MCMC的高计算成本,而保留有用的特征,提供优异的点估计,并通过后夹层概念提供可变选择的自然机制。我们提出的方法的性能通过广泛的仿真进行评估,并与其他最先进的贝叶斯变量选择方法进行比较,展示了可比或更好的性能。最后,我们展示了如何在两个转录组数据集上使用所提出的方法进行审查的生存结果,其中我们识别具有预先存在的生物解释的基因。
translated by 谷歌翻译
本文介绍了由波浪和太阳能运行的低成本无人面车辆(USV)的原型,该车辆可用于最小化海洋数据收集的成本。目前的原型是一个紧凑的USV,长度为1.2米,可以通过两个人部署和恢复。该设计包括电动绞盘,可用于缩回和降低水下单元。设计的几个要素利用添加剂制造和廉价的材料。通过自定义开发的Web应用,可以使用射频(RF)和卫星通信来控制车辆。通过使用先前的研究工作和先进材料的推荐,在拖曳,提升,重量和价格方面进行了优化了表面和水下装置。通过测量几个参数,例如溶解的氧,盐度,温度和pH,USV可用于水状监测。
translated by 谷歌翻译
针对组织病理学图像数据的临床决策支持主要侧重于强烈监督的注释,这提供了直观的解释性,但受专业表现的束缚。在这里,我们提出了一种可解释的癌症复发预测网络(Ecarenet),并表明没有强注释的端到端学习提供最先进的性能,而可以通过注意机制包括可解释性。在前列腺癌生存预测的用例上,使用14,479个图像和仅复发时间作为注释,我们在验证集中达到0.78的累积动态AUC,与专家病理学家(以及在单独测试中的AUC为0.77放)。我们的模型是良好的校准,输出生存曲线以及每位患者的风险分数和群体。利用多实例学习层的注意重量,我们表明恶性斑块对预测的影响较高,从而提供了对预测的直观解释。我们的代码可在www.github.com/imsb-uke/ecarenet上获得。
translated by 谷歌翻译
目的:慢性主动脉疾病的监测成像,如解剖,依赖于在预定义主动脉地标随时间获得和比较预定义主动脉标志的横截面直径测量。由于缺乏鲁棒工具,横截面平面的方向由高训练的操作员手动定义。我们展示了如何有效地使用诊所中常规收集的手动注释来缓解该任务,尽管在测量中存在不可忽略的互操作器可变性。影响:通过利用不完美,回顾性的临床注释,可以缓解或自动化且重复的成像任务的弊端。方法论:在这项工作中,我们结合了卷积神经网络和不确定量化方法来预测这种横截面的取向。我们使用11个操作员随机处理的临床数据进行培训,并在3个独立运营商处理的较小集合上进行测试,以评估互通器变异性。结果:我们的分析表明,手动选择的横截面平面的特点是10.6 ^ \ CirC $ 10.6 ^ \ riC $和每角度为21.4美元的协议限额为95%我们的方法显示,静态误差减少3.57秒^ \ rIC $($ 40.2 $%)和$ 4.11 ^ \ rIC $($ 32.8 $%),而不是5.4 ^ \ rIC $($ 49.0 $%)和16.0美元^ \ CIRC $($ 74.6 $%)对手动处理。结论:这表明预先存在的注释可以是诊所的廉价资源,以便于易于提出和重复的任务,如横截面提取,以便监测主动脉夹层。
translated by 谷歌翻译
Deave Learning模型命名为变形金刚实现了最先进的导致绝大多数NLP任务,以增加计算复杂性和高记忆消耗。在实时推理中使用变压器模型成为在生产中实施时的重大挑战,因为它需要昂贵的计算资源。需要更频率的吞吐量执行变压器的执行越大,并且切换到较小的编码器导致精度降低。我们的论文致力于如何为信息检索管道排名步骤选择合适架构的问题,以便更改变压器编码器的所需呼叫的数量最小,最大可实现的排名质量。我们调查了多种延迟交互模型,如COLBert和Poly-Concoder架构以及它们的修改。此外,我们负责搜索索引的内存占用空间,并尝试应用学习 - 哈希方法,以二值从变压器编码器二值化。使用TREC 2019-2021和MARCO DEV数据集提供评估结果。
translated by 谷歌翻译
越来越多的多视图数据正在通过几个领域的研究发布。这种类型的数据对应于多个数据视图,每个数据视图表示相同的样本集的不同方面。我们最近提出了多SNE,T-SNE的扩展,产生了多视图数据的单一可视化。多SNE方法提供样本的低维嵌入,通过通过不同的数据视图进行迭代地更新。在这里,我们进一步扩展了多个SNE以半监督方法,通过将未标记的样本视为标记信息作为额外的数据视图来分类。我们通过在不同挑战上应用各种多视图数据集的两种方法,我们更深入地进入多SNE及其扩展,S-Multi-SNE的性能,限制和优势。我们表明,通过包括标签信息,样品的投影急剧改善,并伴随着强大的分类性能。
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
我们开发和分析码头:在异构数据集中的非凸分布式学习的新通信高效方法。 Marina采用了一种基于渐变差异的新颖沟通压缩策略,这些差异让人想起,但与Mishchenko等人的Diana方法中所采用的策略不同。 (2019)。与几乎所有竞争对手的分布式一阶方法不同,包括Diana,我们的基于精心设计的偏置渐变估计,这是其卓越理论和实践性能的关键。我们向码头证明的通信复杂性界限明显比以前所有的一阶方法的方式更好。此外,我们开发和分析码头的两种变体:VR-Marina和PP-Marina。当客户所拥有的本地丢失功能是有限和期望形式的局部丢失功能时,第一种方法设计了第一种方法,并且第二种方法允许客户端的部分参与 - 在联合学习中重要的功能。我们所有的方法都优于前面的oracle /通信复杂性的最先进的方法。最后,我们提供了满足Polyak-Lojasiewicz条件的所有方法的收敛分析。
translated by 谷歌翻译