高斯进程(GPS)是通过工程学的社会和自然科学的应用程序学习和统计数据的重要工具。它们构成具有良好校准的不确定性估计的强大的内核非参数方法,然而,由于其立方计算复杂度,从货架上的GP推理程序仅限于具有数千个数据点的数据集。因此,在过去几年中已经开发出许多稀疏的GPS技术。在本文中,我们专注于GP回归任务,并提出了一种基于来自几个本地和相关专家的聚合预测的新方法。因此,专家之间的相关程度可以在独立于完全相关的专家之间变化。考虑到他们的相关性导致了一致的不确定性估算,汇总了专家的个人预测。我们的方法在限制案件中恢复了专家的独立产品,稀疏GP和全GP。呈现的框架可以处理一般的内核函数和多个变量,并且具有时间和空间复杂性,在专家和数据样本的数量中是线性的,这使得我们的方法是高度可扩展的。我们展示了我们提出的方法的卓越性能,这是我们提出的综合性和几个实际数据集的最先进的GP近似方法的卓越性能,以及具有确定性和随机优化的若干现实世界数据集。
translated by 谷歌翻译
结构因果模型是珍珠因果理论的基本建模单元;原则上,他们允许我们解决反事实,这些反应性是因果关系阶梯的顶部梯级。但它们通常包含将其应用程序应用于特殊设置的潜在变量。这似乎是本文证明的事实的结果,即使在具有聚节形图所表征的模型中,也是NP - 硬的因果推断。为了处理这种硬度,我们介绍了因果EM算法。其主要目标是从关于分类清单变量的数据重建关于潜在变量的不确定性。然后通过贝叶斯网络的标准算法解决反事实推断。结果是近似计算反事实的一般方法,是它们可识别的或不可识别(在这种情况下,我们提供界限)。我们经验展示,以及通过导出可靠的间隔,我们提供的近似在展开的EM运行中得到准确。这些结果终于争辩说,似乎对趋势的想法似乎不受注意到的趋势概念,即不知道结构方程,通常可以计算反事实界。
translated by 谷歌翻译
移动设备通过深神经网络(DNN)越来越依赖对象检测(OD)来执行关键任务。由于它们的复杂性高,这些DNN的执行需要过度的时间和能量。低复杂性对象跟踪(OT)可以与OD一起使用,后者定期应用后,以生成“新鲜”的跟踪参考。然而,使用OD处理的帧产生大的延迟,这可以使参考延迟过时并降低跟踪质量。这里,我们建议在这种情况下使用边缘计算,并在对大OD延迟中建立并行OT(在移动设备上)和OD(处于边缘服务器)的进程。我们提出Katch-Up,一种新型跟踪机制,可提高系统弹性过度OD延迟。但是,虽然Katch-up显着提高了性能,但它也增加了移动设备的计算负荷。因此,我们设计SmartDet,基于深度加强学习(DRL)的低复杂性控制器,了解资源利用率和OD性能之间的权衡。 SmartDet作为输入上下文相关信息与当前视频内容相关的信息和当前网络条件,以优化OD卸载的频率和类型,以及Katch-Up利用率。我们在通过Wi-Fi链路连接的GTX 980 TI为移动设备和GTX 980 TI,广泛地评估SmartDet。实验结果表明,SmartDET在跟踪性能 - 平均召回(MAR)和资源使用之间实现了最佳平衡。关于具有完全Katch-Upusage和最大渠道使用的基线,我们仍然将MAR增加4%,同时使用50%的通道和与Katch-Up相关的30%电力资源。对于使用最小资源的固定策略,我们在使用katch-up在框架的1/3上时,我们将MAR增加20%。
translated by 谷歌翻译
深度加强学习为雄心机器人提供了坚定的地形的强大运动政策。迄今为止,很少有研究已经利用基于模型的方法来将这些运动技能与机械手的精确控制相结合。在这里,我们将外部动态计划纳入了基于学习的移动操纵的机置策略。我们通过在模拟中应用机器人基础上的随机扳手序列来培训基础政策,并将有无令的扳手序列预测添加到政策观察。然后,该政策学会抵消部分已知的未来干扰。随机扳手序列被使用与模型预测控制的动态计划生成的扳手预测替换为启用部署。在训练期间,我们向机械手显示零拍摄适应。在硬件上,我们展示了带有外部扳手的腿机器人的稳定运动。
translated by 谷歌翻译
预计人工神经网络的领域将强烈受益于量子计算机的最新发展。特别是Quantum Machine Learning,一类利用用于创建可训练神经网络的Qubits的量子算法,将提供更多的力量来解决模式识别,聚类和机器学习等问题。前馈神经网络的构建块由连接到输出神经元的一层神经元组成,该输出神经元根据任意激活函数被激活。相应的学习算法以Rosenblatt Perceptron的名义。具有特定激活功能的量子感知是已知的,但仍然缺乏在量子计算机上实现任意激活功能的一般方法。在这里,我们用量子算法填充这个间隙,该算法能够将任何分析激活功能近似于其功率系列的任何给定顺序。与以前的提案不同,提供不可逆转的测量和简化的激活功能,我们展示了如何将任何分析功能近似于任何所需的准确性,而无需测量编码信息的状态。由于这种结构的一般性,任何前锋神经网络都可以根据Hornik定理获取通用近似性质。我们的结果重新纳入栅极型量子计算机体系结构中的人工神经网络科学。
translated by 谷歌翻译
尽管关键任务应用需要使用深神经网络(DNN),但它们在移动设备的连续执行导致能耗的显着增加。虽然边缘卸载可以降低能量消耗,但信道质量,网络和边缘服务器负载中的不稳定模式可能导致系统的关键操作严重中断。一种被称为分割计算的替代方法,在模型中生成压缩表示(称为“瓶颈”),以降低带宽使用和能量消耗。事先工作已经提出了引入额外层的方法,以损害能耗和潜伏期。因此,我们提出了一个名为BoleFit的新框架,除了有针对性的DNN架构修改之外,还包括一种新颖的培训策略,即使具有强大的压缩速率,即使具有强大的压缩速率也能实现高精度。我们在图像分类中施加瓶装装饰品,并显示瓶装装备在想象中数据集中实现了77.1%的数据压缩,高达0.6%的精度损耗,而诸如Spinn的最佳精度高达6%。我们通过实验测量在NVIDIA Jetson Nano板(基于GPU)和覆盆子PI板上运行的图像分类应用的功耗和等待时间(GPU - 更低)。我们表明,对于(W.R.T.)本地计算分别降低了高达49%和89%的功耗和延迟,局部计算和37%和55%W.r.t.t.边缘卸载。我们还比较了具有基于最先进的自动化器的方法的瓶装方法,并显示了(i)瓶子分别将功耗和执行时间降低了高达54%和44%,覆盆子上的40%和62% pi; (ii)在移动设备上执行的头部模型的大小为83倍。代码存储库将被公布以获得结果的完全可重复性。
translated by 谷歌翻译
仅使用诸如图像类标签的全局注释,弱监督学习方法允许CNN分类器共同分类图像,并产生与预测类相关的感兴趣区域。然而,在像素水平的任何引导下,这种方法可以产生不准确的区域。已知该问题与组织学图像更具挑战,而不是与天然自然的图像,因为物体不太突出,结构具有更多变化,并且前景和背景区域具有更强的相似之处。因此,用于CNNS的视觉解释的计算机视觉文献中的方法可能无法直接适用。在这项工作中,我们提出了一种基于复合损耗功能的简单而有效的方法,可利用完全消极样本的信息。我们的新损失函数包含两个补充项:第一次利用CNN分类器收集的积极证据,而第二个利用来自CNN分类器的积极证据,而第二个互联网将利用来自训练数据集的完全消极样本。特别是,我们用解码器装备预先训练的分类器,该解码器允许精制感兴趣的区域。利用相同的分类器来收集像素电平的正面和负证据,以培训解码器。这使得能够利用自然地发生在数据中的完全消极样本,而没有任何额外的监督信号,并且仅使用图像类作为监督。与几种相关方法相比,在冒号癌的公共基准GLAS和使用三种不同的骨架的CONELYON16基于乳腺癌的CAMELYON16基准测试,我们展示了我们方法引入的大量改进。我们的结果表明了使用负数和积极证据的好处,即,从分类器获得的效益以及在数据集中自然可用的那个。我们对这两种术语进行了消融研究。我们的代码公开提供。
translated by 谷歌翻译
通过使用其他域的知识来推理一个域的人类能力已经研究了50多年,但正式声音和预测认知过程的模型是稀疏的。我们提出了一种正式的声音方法,通过调整逻辑推理机制来模拟关联推理。特别地,表明,在单一推理系统中,具有大的结合知识的组合,对高效和强大的关联技术的要求。这种方法也用于建模思维徘徊和远程关联测试(RAT)以进行测试。在一般性讨论中,我们展示了该模型对具有意识的广泛认知现象的影响。
translated by 谷歌翻译
国际审计标准要求直接评估财务报表的潜在会计期刊条目。由人工智能的进步驱动,深度学习启发的审计技术出现了审查大量日记帐分类数据。但是,在定期审计中,大多数提出的方法都适用于从相对的静止期刊入学人群中学到,例如财政季度或年份。忽略审计相关分布变更在培训数据中不明显的情况或随时间逐步可用。相比之下,在持续审计中,深度学习模型在录制的日记条目流中持续培训,例如,最后一小时。导致以前知识干扰新信息的情况,并将完全覆盖。这项工作提出了一个持续的异常检测框架,以克服这两个挑战,旨在从日记帐数据经验流中学习。框架是基于故意设计的审计场景和两个现实世界数据集的评估。我们的实验结果提供了初步证据,即这种学习方案提供了减少假冒警报和假阴性决策的能力。
translated by 谷歌翻译
先进的可穿戴设备越来越多地利用高分辨率多摄像头系统。作为用于处理所得到的图像数据的最先进的神经网络是计算要求的,对于利用第五代(5G)无线连接和移动边缘计算,已经越来越感兴趣,以将该处理卸载到云。为了评估这种可能性,本文提出了一个详细的仿真和评估,用于5G无线卸载,用于对象检测,在一个名为Vis4ion的强大新型智能可穿戴物中,用于盲目损害(BVI)。目前的Vis4ion系统是一种具有高分辨率摄像机,视觉处理和触觉和音频反馈的仪表簿。本文认为将相机数据上载到移动边缘云以执行实时对象检测并将检测结果传输回可穿戴。为了确定视频要求,纸张评估视频比特率和分辨率对物体检测精度和范围的影响。利用与BVI导航相关的标记对象的新街道场景数据集进行分析。视觉评估与详细的全堆栈无线网络仿真结合,以确定吞吐量的分布和延迟,具有来自城市环境中的新高分辨率3D模型的实际导航路径和射线跟踪。为了比较,无线仿真考虑了标准的4G长期演进(LTE)载波和高速度5G毫米波(MMWAVE)载波。因此,该工作提供了对具有高带宽和低延迟要求的应用中的MMWAVE连接的边缘计算的彻底和现实评估。
translated by 谷歌翻译