尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
从稀疏的原始数据中生成密集的点云使下游3D理解任务,但现有模型仅限于固定的上采样率或短范围的整数值。在本文中,我们提出了APU-SMOG,这是一种基于变压器的模型,用于任意点云上采样(APU)。首先将稀疏输入映射到高斯(烟雾)分布的球形混合物,从中可以采样任意数量的点。然后,将这些样品作为查询馈送到变压器解码器,将它们映射回目标表面。广泛的定性和定量评估表明,APU-SMOG的表现优于最先进的固定比例方法,同时使用任何缩放因子(包括非直觉值)有效地启用了以单个训练有素的模型来提高采样。该代码将可用。
translated by 谷歌翻译
利用梯度泄漏以重建据称为私人培训数据,梯度反演攻击是神经网络协作学习的无处不在威胁。为了防止梯度泄漏而不会遭受模型绩效严重损失的情况,最近的工作提出了一个基于变化模型作为任意模型体系结构的扩展的隐私增强模块(预编码)。在这项工作中,我们研究了预言对梯度反转攻击的影响,以揭示其基本的工作原理。我们表明,各变化建模会引起预科及其随后的层梯度的随机性,从而阻止梯度攻击的收敛性。通过在攻击优化期间有目的地省略那些随机梯度,我们制定了一种可以禁用Precode隐私保护效果的攻击。为了确保对这种有针对性攻击的隐私保护,我们将部分扰动(PPP)提出,作为变异建模和部分梯度扰动的战略组合。我们对四个开创性模型架构和两个图像分类数据集进行了广泛的实证研究。我们发现所有架构都容易梯度泄漏,可以通过PPP预防。因此,我们表明我们的方法需要较小的梯度扰动才能有效地保留隐私而不会损害模型性能。
translated by 谷歌翻译
尽管社交媒体中的Echo Chambers受到了相当大的审查,但仍缺少用于检测和分析的一般模型。在这项工作中,我们旨在通过提出一个概率的生成模型来填补这一空白,该模型通过一系列具有一定程度的回声室行为来解释社交媒体足迹(即社交网络结构和信息传播)。并以极性。具体而言,回声室被建模为可渗透到具有相似意识形态极性的信息的社区,并且对相反的倾向信息不渗透:这允许将回声室与缺乏明确意识形态保持一致的社区区分。为了了解模型参数,我们提出了对广义期望最大化算法的可扩展的随机适应,该算法优化了观察社会联系和信息传播的关节可能性。合成数据的实验表明,我们的算法能够及其具有回声室行为和意见极性的程度正确地重建地面真相社区。关于两极分化社会和政治辩论的现实数据的实验,例如英国脱欧公投或COVID-19疫苗运动,证实了我们提议在检测回声室方面的有效性。最后,我们展示了我们的模型如何提高辅助预测任务的准确性,例如立场检测和未来传播的预测。
translated by 谷歌翻译
我们提出了一种多层变量自动编码器方法,我们称为HR-VQVAE,该方法学习数据的层次离散表示。通过利用新的目标函数,HR-VQVAE中的每个层都通过量化的编码来学习从以前的层中的残差表示离散表示。此外,每一层的表示形式在层次上链接到以前的图层。我们评估了图像重建和生成任务的方法。实验结果表明,HR-VQVAE学到的离散表示使解码器能够比基线方法(即VQVAE和VQVAE-2)重建具有较小的变形的高质量图像。 HR-VQVAE还可以产生优于最先进的生成模型的高质量和多样化的图像,从而进一步验证学习表现的效率。 HR-VQVAE的层次结构性质i)减少了解码时间,使该方法特别适合高负载任务,ii)允许增加代码簿的大小而不会引起代码书折叠问题。
translated by 谷歌翻译
非破坏性测试(NDT)被广泛应用于制造和操作过程中涡轮组件的缺陷鉴定。操作效率是燃气轮机OEM(原始设备制造商)的关键。因此,在最小化所涉及的不确定性的同时,尽可能多地自动化检查过程至关重要。我们提出了一个基于视网膜的模型,以识别涡轮叶片X射线图像中的钻孔缺陷。该应用程序是由于大图分辨率而具有挑战性的,在这种分辨率上,缺陷非常小,几乎没有被常用的锚尺寸捕获,并且由于可用数据集的尺寸很小。实际上,所有这些问题在将基于深度学习的对象检测模型应用于工业缺陷数据中非常普遍。我们使用开源模型克服了此类问题,将输入图像分成图块并将其扩展,应用重型数据增强,并使用差分进化器求解器优化锚固尺寸和宽高比。我们用$ 3 $倍的交叉验证验证该模型,显示出非常高的精度,可以识别缺陷的图像。我们还定义了一组最佳实践,可以帮助其他从业者克服类似的挑战。
translated by 谷歌翻译
本文介绍了一个基于量子神经网络的深度学习系统,用于在平面上特定几何模式(两个摩尔分类问题)的点的二进制分类。我们认为,混合深度学习系统(经典 +量子)的使用不仅可以在计算加速度方面带来合理的好处,而且在理解基本现象和机制方面都可以带来好处。这将导致创建新的机器学习形式,以及量子计算世界中的强大发展。所选数据集基于2D二进制分类生成器,该生成器有助于测试特定算法的有效性;它是一组2D点,形成两个散布的半圆。它在二维表示空间中显示了两个分离的数据集:因此,功能是单个点的两个坐标,$ x_1 $和$ x_2 $。目的是产生一个量子深神经网络,其可识别和分类点的可训练参数数量最少。
translated by 谷歌翻译
整数线性编程(ILP)提供了一种可行的机制,可以用自然语言编码有关可解释的多跳推断的明确和可控制的假设。但是,ILP公式是不可差异的,不能集成到更广泛的深度学习体系结构中。最近,Thayaparan等人。 (2021a)提出了一种新的方法,将ILP与变压器整合在一起,以实现复杂多跳推断的端到端的可不同性。尽管已证明该混合动力框架可以提供更好的答案和解释选择,而不是基于变压器和现有的ILP求解器,但神经符号的整合仍然依赖于ILP配方的凸松弛,这可以产生亚最佳溶液。为了改善这些局限性,我们提出了DIFF-BOMP解释器,这是一种基于可区分的黑框组合求解器(DBCS)的新型神经符号结构(Pogan \ V {C} I \'C等,2019)。与现有的可区分求解器不同,提出的模型不需要对明确的语义约束的转换和放松,从而可以直接,更有效地整合ILP公式。 DIFF-COMBLEXER证明了与非差异性求解器,变压器和现有的基于可区分约束的多跳推理框架相比的准确性和解释性的提高。
translated by 谷歌翻译
基于强大的预训练语言模型(PLM)的密集检索方法(DR)方法取得了重大进步,并已成为现代开放域问答系统的关键组成部分。但是,他们需要大量的手动注释才能进行竞争性,这是不可行的。为了解决这个问题,越来越多的研究作品最近着重于在低资源场景下改善DR绩效。这些作品在培训所需的资源和采用各种技术的资源方面有所不同。了解这种差异对于在特定的低资源场景下选择正确的技术至关重要。为了促进这种理解,我们提供了针对低资源DR的主流技术的彻底结构化概述。根据他们所需的资源,我们将技术分为三个主要类别:(1)仅需要文档; (2)需要文件和问题; (3)需要文档和提问对。对于每种技术,我们都会介绍其一般形式算法,突出显示开放的问题和利弊。概述了有希望的方向以供将来的研究。
translated by 谷歌翻译
在医院世界中,存在一些复杂的组合问题,解决这些问题对于提高患者的满意度和提供的护理质量很重要。医疗保健中的问题很复杂,因为解决了几个限制,应考虑不同类型的资源。此外,必须在少量时间内评估解决方案,以确保实际情况下的可用性。我们计划针对这类问题提出解决方案,包括扩展已经测试的解决方案,并通过对新问题进行建模解决方案,并考虑到文献,并在可用时使用真实数据。解决这类问题很重要,但是,由于欧盟委员会根据一般数据保护法规确定,每个人都有权利要求解释AI做出的决定,而不开发可解释性方法,因此使用了基于AI的求解器,例如。基于答案集编程的人将受到限制。因此,研究的另一部分将专门研究并提出了解释获得的解决方案的新方法。
translated by 谷歌翻译