我们介绍了一个新的真实值不变,称为3范围内的双曲结的自然斜率,这在其CUSP几何形状中定义。我们展示了两倍的结签名,自然斜率在大多数恒定时间上不同的双曲线除以喷射率半径的立方体。使用机器学习发现这种不等式来检测各种结不变之间的关系。它有应用于Dehn手术和4球属的应用。我们还显示了一个精致版本的不等式,其中上限是体积的线性函数,并且斜率通过对应于链接结的短测地测量的术语来校正,该术语将结奇数次数。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
由于其对金融服务,保险和医疗保健等许多行业的自动化业务工作流程的潜在影响,自动化信息提取的信息从格式的信息提取是一种压迫需求。关键挑战是这些业务工作流中的形式类似的文件可以在很多无限的方式下放出;因此,对此问题的良好解决方案应该概括到具有看不见的布局和语言的文档。此问题的解决方案需要对文档中的文本段和视觉提示的全面了解,这是非微不足道的。虽然自然语言处理和计算机视觉社区开始解决这个问题,但在(1)数据效率上没有大量关注(2)跨越不同文档类型和语言的能力。在本文中,我们认为,当我们只有少量标记的培训文件(〜50)时,从相当大的结构不同的较大标记的语料库中的简单转移学习方法产生高达27 f1点的改进,即在简单的训练上目标域中的小语料库。我们通过简单的多域转移学习方法改进了这一点,目前正在生产使用中,并表明这达到了8个F1点的改进。我们使数据效率至关重要,使信息提取系统能够扩展以处理数百种不同的文档类型,并且学习良好的表示对于实现这一目标是至关重要的。
translated by 谷歌翻译
凭借其综合理论和实际相关性,逻辑匪徒最近经历了仔细的审查。这项研究工作提供了统计上有效的算法,通过指数巨大的因素来改善以前的策略的遗憾。然而,这种算法非常昂贵,因为它们需要每轮的$ \ omega(t)$操作。另一方面,一种不同的研究系列专注于计算效率($ \ mathcal {o}(1)美元的成本),但在放弃上述指数改进的成本上。遗憾的是,获得两个世界的最佳并非结婚两种方法的问题。相反,我们为Logistic Barits介绍了一个新的学习过程。它产生了信心集,可以在没有牺牲统计密封性的情况下轻松在线维护足够的统计数据。结合高效的规划机制,我们设计了快速算法,后悔性能仍然符合Abeille等人的问题依赖性较低。 (2021)。据我们所知,这些是第一个同时享受统计和计算效率的第一逻辑强盗算法。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
建立新型观点综合的最近进展后,我们提出了改善单眼深度估计的应用。特别是,我们提出了一种在三个主要步骤中分开的新颖训练方法。首先,单眼深度网络的预测结果被扭转到额外的视点。其次,我们应用一个额外的图像综合网络,其纠正并提高了翘曲的RGB图像的质量。通过最小化像素-WISE RGB重建误差,该网络的输出需要尽可能类似地查看地面真实性视图。第三,我们将相同的单眼深度估计重新应用于合成的第二视图点,并确保深度预测与相关的地面真理深度一致。实验结果证明,我们的方法在Kitti和Nyu-Deaft-V2数据集上实现了最先进的或可比性,具有轻量级和简单的香草U-Net架构。
translated by 谷歌翻译
多字符分类(MCC)是一个基本机器学习问题,其旨在将每个实例分类为预定义的类集中的一个。鉴于实例,分类模型计算每个类的分数,然后所有类别都用于对类进行排序。分类模型的性能通常通过TOP-K精度/误差(例如,k = 1或5)来测量。在本文中,我们不会旨在提出新的神经表征学习模型,因为最近的作品,但要表明通过排名镜头可以轻松提高MCC性能。特别是,通过将MCC视为对实例的等级等级,我们首先争辩说排名指标,例如归一化的折扣累积增益(NDCG),可以比现有的Top-K度量更具信息化。我们进一步证明主导的神经MCC架构可以用特定的设计选择制定为神经排名框架。基于这种概括,我们表明,利用丰富的信息检索文献利用技术将技术效果简单,直观地将MCC性能从盒子中提高。具有不同数据集和骨干型号的文本和图像分类任务的广泛经验结果(例如,用于文本和图像分类的BERT和RESET)显示了我们提出的框架的价值。
translated by 谷歌翻译
本文解决了在水模型部署民主化中采用了机器学习的一些挑战。第一个挑战是减少了在主动学习的帮助下减少了标签努力(因此关注数据质量),模型推断与Oracle之间的反馈循环:如在保险中,未标记的数据通常丰富,主动学习可能会成为一个重要的资产减少标签成本。为此目的,本文在研究其对合成和真实数据集的实证影响之前,阐述了各种古典主动学习方法。保险中的另一个关键挑战是模型推论中的公平问题。我们将在此主动学习框架中介绍和整合一个用于多级任务的后处理公平,以解决这两个问题。最后对不公平数据集的数值实验突出显示所提出的设置在模型精度和公平性之间存在良好的折衷。
translated by 谷歌翻译
了解来自第一人称观点的社交互动对于许多应用来说至关重要,从辅助机器人到AR / VR。谈论相互作用的第一步是理解人类的姿势和形状。但是,该领域的研究目前受到数据缺乏的阻碍。现有数据集根据大小,注释,地面真实捕获方式或相互作用的多样性有限。我们通过提出EGOBODY来解决这一缺点,这是一个用于复杂3D场景中的社交交互的新型大规模数据集。我们采用Microsoft Hololens2耳机来记录富裕的EGEntric数据流(包括RGB,深度,眼睛凝视,头部和手动跟踪)。为了获得准确的3D地面真理,我们将耳机用多kinect钻机校准并配合富有呈现的SMPL-X体网格到多视图RGB-D帧,重建3D人类姿势和相对于场景的形状。我们收集68个序列,跨越不同的社会学互动类别,并提出了从自我监视视图的3D全体姿态和形状估计的第一个基准。我们的数据集和代码将在https://sanweiliti.github.io/egobody/egobody.html中进行研究。
translated by 谷歌翻译
在异构机器人网络上进行计算负载共享是一个有希望的方法,可以将机器人能力和效率作为极端环境中的团队提高。然而,在这种环境中,通信链路可以是间歇性的,并且与云或因特网的连接可能是不存在的。在本文中,我们介绍了用于多机器人系统的通信感知,计算任务调度问题,并提出了整数线性程序(ILP),该程序(ILP)优化了异构机器人网络中的计算任务分配,占网络机器人的计算能力对于可用(和可能的时变)通信链接。我们考虑调度由依赖关系图建模的一组相互依赖的必需任务和可选任务。我们为共享世界,分布式系统提供了一项备份的调度架构。我们验证了ILP制定和不同计算平台中的分布式实现,并在模拟场景中,偏向于月球或行星探索方案。我们的研究结果表明,与没有计算负载共享的类似系统相比,所提出的实施方式可以优化提高时间表以允许三倍增加所执行的奖励任务的数量(例如,科学测量)。
translated by 谷歌翻译