展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
从有限的资源中获得最大收益可以进步自然语言处理(NLP)研究和实践,同时保守资源。这些资源可能是数据,时间,存储或能源。NLP的最新工作从缩放率产生了有趣的结果。但是,仅使用比例来改善结果意味着资源消耗也会扩展。这种关系激发了对有效方法的研究,这些方法需要更少的资源才能获得相似的结果。这项调查涉及NLP效率的方法和发现,旨在指导该领域的新研究人员并激发新方法的发展。
translated by 谷歌翻译
在大型数据集上培训大型神经语言模型是资源和时间密集型的。这些要求造成了进入的障碍,其中资源较少的人无法建立竞争模型。本文介绍了各种技术,以使(a)使用适中的研究实验室可能拥有的资源训练大型语言模型,以及(b)在合理的时间内训练它。我们为从业人员提供具体的建议,我们通过案例研究来说明这一点:丹麦的T5模型,第一种语言。
translated by 谷歌翻译
本文档描述了基于深度学习的点云几何编解码器和基于深度学习的点云关节几何和颜色编解码器,并提交给2022年1月发出的JPEG PLENO点云编码的建议。拟议的编解码器是基于最新的。基于深度学习的PC几何编码的发展,并提供了呼吁提案的一些关键功能。拟议的几何编解码器提供了一种压缩效率,可超过MPEG G-PCC标准和胜过MPEG的效率,或者与V-PCC Intra Intra Interra Interra Intra标准的竞争力均超过了jpeg呼叫提案测试集;但是,由于需要克服的质量饱和效应,关节几何和颜色编解码器不会发生同样的情况。
translated by 谷歌翻译
IOT应用中的总是关于Tinyml的感知任务需要非常高的能量效率。模拟计算内存(CIM)使用非易失性存储器(NVM)承诺高效率,并提供自包含的片上模型存储。然而,模拟CIM推出了新的实际考虑因素,包括电导漂移,读/写噪声,固定的模数转换器增益等。必须解决这些附加约束,以实现可以通过可接受的模拟CIM部署的模型精度损失。这项工作描述了$ \ textit {analognets} $:tinyml模型用于关键字点(kws)和视觉唤醒词(VWW)的流行始终是on。模型架构专门为模拟CIM设计,我们详细介绍了一种全面的培训方法,以在推理时间内保持面对模拟非理想的精度和低精度数据转换器。我们还描述了AON-CIM,可编程,最小面积的相变存储器(PCM)模拟CIM加速器,具有新颖的层串行方法,以消除与完全流水线设计相关的复杂互连的成本。我们在校准的模拟器以及真正的硬件中评估了对校准模拟器的矛盾,并发现精度下降限制为KWS / VWW的PCM漂移(8位)24小时后的0.8 $ \%$ / 1.2 $ \%$。在14nm AON-CIM加速器上运行的analognets使用8位激活,分别使用8位激活,并增加到57.39 / 25.69个顶部/ w,以4美元$ 4 $ 57.39 / 25.69。
translated by 谷歌翻译
估计X射线图像上的肺深度可以在临床常规期间提供精确的机会肺部体积估计,并提高现代结构胸部成像技术中的图像对比,如X射线暗场成像。我们提出了一种基于卷积神经网络的方法,允许每像素肺厚度估计和随后的总肺容量估计。使用从5250个真实CT扫描生成的5250个模拟Xco.NoRh,网络培训并验证了网络。此外,我们能够在真正的X线片上推断使用仿真数据训练的模型。对于45名患者,对标准临床射线照相进行定量和定性评估。基于患者对应的CT扫描来定义每个患者总肺体积的地面真理。 45个真实射线照片上的估计肺体积与地基体积之间的平均值误差为0.83升。核算患者直径时,误差会降至0.66升。辅助,我们预测了131 X射线照片的合成数据集上的肺部厚度,其中平均值误差为0.21升。结果表明,可以将在仿真模型中获得的知识转移到真正的X射线图像。
translated by 谷歌翻译
灵巧的操纵仍然是机器人技术中的一个空缺问题。为了协调研究界为解决这个问题的努力,我们提出了共同的基准。我们设计和构建了机器人平台,该平台托管在MPI上供智能系统托管,可以远程访问。每个平台由三个能够敏捷物体操纵的机器人手指组成。用户能够通过提交自动执行的代码(类似于计算群集)来远程控制平台。使用此设置,i)我们举办机器人竞赛,来自世界任何地方的团队访问我们的平台以应对具有挑战性的任务ii)我们发布了在这些比赛中收集的数据集(包括数百个机器人小时),而我们为研究人员提供了访问自己项目的这些平台。
translated by 谷歌翻译
尽管自动图像分析的重要性不断增加,但最近的元研究揭示了有关算法验证的主要缺陷。性能指标对于使用的自动算法的有意义,客观和透明的性能评估和验证尤其是关键,但是在使用特定的指标进行给定的图像分析任务时,对实际陷阱的关注相对较少。这些通常与(1)无视固有的度量属性,例如在存在类不平衡或小目标结构的情况下的行为,(2)无视固有的数据集属性,例如测试的非独立性案例和(3)无视指标应反映的实际生物医学领域的兴趣。该动态文档的目的是说明图像分析领域通常应用的性能指标的重要局限性。在这种情况下,它重点介绍了可以用作图像级分类,语义分割,实例分割或对象检测任务的生物医学图像分析问题。当前版本是基于由全球60多家机构的国际图像分析专家进行的关于指标的Delphi流程。
translated by 谷歌翻译
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
translated by 谷歌翻译
This article proposes a model-based deep reinforcement learning (DRL) method to design emergency control strategies for short-term voltage stability problems in power systems. Recent advances show promising results in model-free DRL-based methods for power systems, but model-free methods suffer from poor sample efficiency and training time, both critical for making state-of-the-art DRL algorithms practically applicable. DRL-agent learns an optimal policy via a trial-and-error method while interacting with the real-world environment. And it is desirable to minimize the direct interaction of the DRL agent with the real-world power grid due to its safety-critical nature. Additionally, state-of-the-art DRL-based policies are mostly trained using a physics-based grid simulator where dynamic simulation is computationally intensive, lowering the training efficiency. We propose a novel model-based-DRL framework where a deep neural network (DNN)-based dynamic surrogate model, instead of a real-world power-grid or physics-based simulation, is utilized with the policy learning framework, making the process faster and sample efficient. However, stabilizing model-based DRL is challenging because of the complex system dynamics of large-scale power systems. We solved these issues by incorporating imitation learning to have a warm start in policy learning, reward-shaping, and multi-step surrogate loss. Finally, we achieved 97.5% sample efficiency and 87.7% training efficiency for an application to the IEEE 300-bus test system.
translated by 谷歌翻译