展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
IOT应用中的总是关于Tinyml的感知任务需要非常高的能量效率。模拟计算内存(CIM)使用非易失性存储器(NVM)承诺高效率,并提供自包含的片上模型存储。然而,模拟CIM推出了新的实际考虑因素,包括电导漂移,读/写噪声,固定的模数转换器增益等。必须解决这些附加约束,以实现可以通过可接受的模拟CIM部署的模型精度损失。这项工作描述了$ \ textit {analognets} $:tinyml模型用于关键字点(kws)和视觉唤醒词(VWW)的流行始终是on。模型架构专门为模拟CIM设计,我们详细介绍了一种全面的培训方法,以在推理时间内保持面对模拟非理想的精度和低精度数据转换器。我们还描述了AON-CIM,可编程,最小面积的相变存储器(PCM)模拟CIM加速器,具有新颖的层串行方法,以消除与完全流水线设计相关的复杂互连的成本。我们在校准的模拟器以及真正的硬件中评估了对校准模拟器的矛盾,并发现精度下降限制为KWS / VWW的PCM漂移(8位)24小时后的0.8 $ \%$ / 1.2 $ \%$。在14nm AON-CIM加速器上运行的analognets使用8位激活,分别使用8位激活,并增加到57.39 / 25.69个顶部/ w,以4美元$ 4 $ 57.39 / 25.69。
translated by 谷歌翻译
估计X射线图像上的肺深度可以在临床常规期间提供精确的机会肺部体积估计,并提高现代结构胸部成像技术中的图像对比,如X射线暗场成像。我们提出了一种基于卷积神经网络的方法,允许每像素肺厚度估计和随后的总肺容量估计。使用从5250个真实CT扫描生成的5250个模拟Xco.NoRh,网络培训并验证了网络。此外,我们能够在真正的X线片上推断使用仿真数据训练的模型。对于45名患者,对标准临床射线照相进行定量和定性评估。基于患者对应的CT扫描来定义每个患者总肺体积的地面真理。 45个真实射线照片上的估计肺体积与地基体积之间的平均值误差为0.83升。核算患者直径时,误差会降至0.66升。辅助,我们预测了131 X射线照片的合成数据集上的肺部厚度,其中平均值误差为0.21升。结果表明,可以将在仿真模型中获得的知识转移到真正的X射线图像。
translated by 谷歌翻译
AI / Compling在Scale是一个难题,特别是在医疗保健环境中。我们概述了要求,规划和实施选择,以及导致我们安全的研究计算平台,埃森医疗计算平台(EMCP)的实施的指导原则,与德国主要医院隶属。遵从性,数据隐私和可用性是系统的不可变的要求。我们将讨论我们的计算飞地的功能,我们将为希望采用类似设置的团体提供我们的配方。
translated by 谷歌翻译
从诸如蛋白质折叠或配体 - 受体结合如蛋白质 - 折叠或配体 - 受体结合等生物分子过程的长时间轨迹的低尺寸表示是基本的重要性和动力学模型,例如Markov建模,这些模型已经证明是有用的,用于描述这些系统的动力学。最近,引入了一种被称为vampnet的无监督机器学习技术,以以端到端的方式学习低维度表示和线性动态模型。 Vampnet基于Markov进程(VAMP)的变分方法,并依赖于神经网络来学习粗粒度的动态。在此贡献中,我们将Vampnet和图形神经网络组合生成端到端的框架,以从长时间的分子动力学轨迹有效地学习高级动态和亚稳态。该方法承载图形表示学习的优点,并使用图形消息传递操作来生成用于VAMPNET中使用的每个数据点以生成粗粒化表示的嵌入。这种类型的分子表示结果导致更高的分辨率和更可接定的Markov模型,而不是标准Vampnet,使得对生物分子过程更详细的动力学研究。我们的GraphVampNet方法也具有注意机制,以找到分类为不同亚稳态的重要残留物。
translated by 谷歌翻译
对比度学习依赖于假设正对包含相关视图,例如,视频的图像或视频的共同发生的多峰信号,其共享关于实例的某些基础信息。但如果违反了这个假设怎么办?该文献表明,对比学学习在存在嘈杂的视图中产生次优表示,例如,没有明显共享信息的假正对。在这项工作中,我们提出了一种新的对比损失函数,这是对嘈杂的观点的强大。我们通过显示嘈杂二进制分类的强大对称损失的连接提供严格的理论理由,并通过基于Wassersein距离测量来建立新的对比界限进行新的对比。拟议的损失是完全的方式无话无双,并且对Innoconce损失的更换简单的替代品,这使得适用于现有的对比框架。我们表明,我们的方法提供了在展示各种现实世界噪声模式的图像,视频和图形对比学习基准上的一致性改进。
translated by 谷歌翻译
移动屏幕的布局是UI设计研究和对屏幕的语义理解的关键数据源。但是,现有数据集中的UI布局通常是嘈杂的,具有与其视觉表示的不匹配,或者由难以分析和模型的通用或应用特定类型组成。在本文中,我们提出了使用深度学习方法的粘土管道,用于去噪UI布局,允许我们在比例下自动改进现有的移动UI布局数据集。我们的管道采用屏幕截图和原始UI布局,通过删除不正确的节点并向每个节点分配语义有意义的类型来注释原始布局。为了实验我们的数据清洁管道,我们根据来自Rico的截图和原始布局,创建59,555个人注释的屏幕布局的粘土数据集,该网站上是一个公共移动UI语料库。我们的深度模型可实现高精度,F1分数为82.7%,用于检测没有有效的视觉表示的布局对象,85.9%用于识别对象类型,这显着优于启发式基线。我们的工作为创建大规模高质量的UI布局数据集提供了用于数据驱动的移动UI研究的基础,并减少了手动标签的需要,这些努力非常昂贵。
translated by 谷歌翻译
图像质量是一个模糊的概念,对不同的人不同的含义。为了量化图像质量,通常在损坏的图像和地面真实图像之间计算相对差异。但是我们应该使用哪些指标来测量这种差异?理想情况下,公制应对自然和科学图像表现良好。结构相似度指数(SSIM)是人类如何感知图像相似性的好措施,但对显微镜中科学有意义的差异不敏感。在电子和超分辨率显微镜中,经常使用傅里叶环相关(FRC),但在这些领域之外几乎是知名的。在这里,我们表明FRC同样可以应用于自然图像,例如自然图像。 Google打开图像数据集。然后,我们基于FRC定义了损失功能,表明它是在分析上可分的,并使用它来训练U-Net以用于去噪图像。这种基于FRC的损耗功能允许网络训练更快并达到与使用基于L1或L2的损失相似或更好的结果。我们还研究了通过FRC分析的神经网络去噪的性质和局限性。
translated by 谷歌翻译
本文报告了Chalearn的Autodl挑战系列的结果和后攻击分析,这有助于对自动学习(DL)进行分类,以便在各种环境中引入的深度学习(DL),但缺乏公平的比较。格式化所有输入数据模型(时间序列,图像,视频,文本,表格)作为张量,所有任务都是多标签分类问题。代码提交已在隐藏的任务上执行,具有限制时间和计算资源,推动快速获取结果的解决方案。在此设置中,DL方法占主导地位,但流行的神经结构搜索(NAS)是不切实际的。解决方案依赖于微调预培训的网络,架构匹配数据模块。挑战后测试没有透露超出强加时间限制的改进。虽然没有组件尤其原始或新颖,但是一个高级模块化组织出现了“Meta-Learner”,“数据摄入”,“模型选择器”,“模型/学习者”和“评估员”。这种模块化使得消融研究,揭示了(离坡)元学习,合奏和高效数据管理的重要性。异构模块组合的实验进一步证实了获胜解决方案的(本地)最优性。我们的挑战队遗产包括一个持久的基准(http://utodl.chalearn.org),获胜者的开放源代码,以及免费的“autodl自助服务”。
translated by 谷歌翻译
在本文中,我们为Pavlovian信号传达的多方面的研究 - 一个过程中学到的一个过程,一个代理商通过另一个代理商通知决策的时间扩展预测。信令紧密连接到时间和时间。在生成和接收信号的服务中,已知人类和其他动物代表时间,确定自过去事件以来的时间,预测到未来刺激的时间,并且都识别和生成展开时间的模式。我们调查通过引入部分可观察到的决策域来对学习代理之间的影响和信令在我们称之为霜冻空心的情况下如何影响学习代理之间的影响和信令。在该域中,预测学习代理和加强学习代理被耦合到两部分决策系统,该系统可以在避免时间条件危险时获取稀疏奖励。我们评估了两个域变型:机器代理在七态线性步行中交互,以及虚拟现实环境中的人机交互。我们的结果展示了帕夫洛维亚信号传导的学习速度,对药剂 - 代理协调具有不同时间表示(并且不)的影响,以及颞次锯齿对药剂和人毒剂相互作用的影响方式不同。作为主要贡献,我们将Pavlovian信号传导为固定信号范例与两个代理之间完全自适应通信学习之间的天然桥梁。我们进一步展示了如何从固定的信令过程计算地构建该自适应信令处理,其特征在于,通过快速的连续预测学习和对接收信号的性质的最小限制。因此,我们的结果表明了加固学习代理之间的沟通学习的可行建设者的途径。
translated by 谷歌翻译