展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
IOT应用中的总是关于Tinyml的感知任务需要非常高的能量效率。模拟计算内存(CIM)使用非易失性存储器(NVM)承诺高效率,并提供自包含的片上模型存储。然而,模拟CIM推出了新的实际考虑因素,包括电导漂移,读/写噪声,固定的模数转换器增益等。必须解决这些附加约束,以实现可以通过可接受的模拟CIM部署的模型精度损失。这项工作描述了$ \ textit {analognets} $:tinyml模型用于关键字点(kws)和视觉唤醒词(VWW)的流行始终是on。模型架构专门为模拟CIM设计,我们详细介绍了一种全面的培训方法,以在推理时间内保持面对模拟非理想的精度和低精度数据转换器。我们还描述了AON-CIM,可编程,最小面积的相变存储器(PCM)模拟CIM加速器,具有新颖的层串行方法,以消除与完全流水线设计相关的复杂互连的成本。我们在校准的模拟器以及真正的硬件中评估了对校准模拟器的矛盾,并发现精度下降限制为KWS / VWW的PCM漂移(8位)24小时后的0.8 $ \%$ / 1.2 $ \%$。在14nm AON-CIM加速器上运行的analognets使用8位激活,分别使用8位激活,并增加到57.39 / 25.69个顶部/ w,以4美元$ 4 $ 57.39 / 25.69。
translated by 谷歌翻译
估计X射线图像上的肺深度可以在临床常规期间提供精确的机会肺部体积估计,并提高现代结构胸部成像技术中的图像对比,如X射线暗场成像。我们提出了一种基于卷积神经网络的方法,允许每像素肺厚度估计和随后的总肺容量估计。使用从5250个真实CT扫描生成的5250个模拟Xco.NoRh,网络培训并验证了网络。此外,我们能够在真正的X线片上推断使用仿真数据训练的模型。对于45名患者,对标准临床射线照相进行定量和定性评估。基于患者对应的CT扫描来定义每个患者总肺体积的地面真理。 45个真实射线照片上的估计肺体积与地基体积之间的平均值误差为0.83升。核算患者直径时,误差会降至0.66升。辅助,我们预测了131 X射线照片的合成数据集上的肺部厚度,其中平均值误差为0.21升。结果表明,可以将在仿真模型中获得的知识转移到真正的X射线图像。
translated by 谷歌翻译
灵巧的操纵仍然是机器人技术中的一个空缺问题。为了协调研究界为解决这个问题的努力,我们提出了共同的基准。我们设计和构建了机器人平台,该平台托管在MPI上供智能系统托管,可以远程访问。每个平台由三个能够敏捷物体操纵的机器人手指组成。用户能够通过提交自动执行的代码(类似于计算群集)来远程控制平台。使用此设置,i)我们举办机器人竞赛,来自世界任何地方的团队访问我们的平台以应对具有挑战性的任务ii)我们发布了在这些比赛中收集的数据集(包括数百个机器人小时),而我们为研究人员提供了访问自己项目的这些平台。
translated by 谷歌翻译
尽管自动图像分析的重要性不断增加,但最近的元研究揭示了有关算法验证的主要缺陷。性能指标对于使用的自动算法的有意义,客观和透明的性能评估和验证尤其是关键,但是在使用特定的指标进行给定的图像分析任务时,对实际陷阱的关注相对较少。这些通常与(1)无视固有的度量属性,例如在存在类不平衡或小目标结构的情况下的行为,(2)无视固有的数据集属性,例如测试的非独立性案例和(3)无视指标应反映的实际生物医学领域的兴趣。该动态文档的目的是说明图像分析领域通常应用的性能指标的重要局限性。在这种情况下,它重点介绍了可以用作图像级分类,语义分割,实例分割或对象检测任务的生物医学图像分析问题。当前版本是基于由全球60多家机构的国际图像分析专家进行的关于指标的Delphi流程。
translated by 谷歌翻译
计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
仅使用单视2D照片的收藏集对3D感知生成对抗网络(GAN)的无监督学习最近取得了很多进展。然而,这些3D gan尚未证明人体,并且现有框架的产生的辐射场不是直接编辑的,从而限制了它们在下游任务中的适用性。我们通过开发一个3D GAN框架来解决这些挑战的解决方案,该框架学会在规范的姿势中生成人体或面部的辐射场,并使用显式变形场将其扭曲成所需的身体姿势或面部表达。使用我们的框架,我们展示了人体的第一个高质量的辐射现场生成结果。此外,我们表明,与未接受明确变形训练的3D GAN相比,在编辑其姿势或面部表情时,我们的变形感知训练程序可显着提高产生的身体或面部的质量。
translated by 谷歌翻译
建筑物中的供暖和冷却系统占全球能源使用的31%,其中大部分受基于规则的控制器(RBC)调节,这些控制器(RBC)既不通过与网格最佳交互来最大程度地提高能源效率或最小化排放。通过增强学习(RL)的控制已显示可显着提高建筑能源效率,但是现有的解决方案需要在模拟器中进行预训练,这些模拟器对世界上每栋建筑物的获得非常昂贵。作为回应,我们表明可以通过结合系统识别和基于模型的RL的想法来对建筑物进行安全,零射击的控制。我们称这种组合珍珠(概率避免施加加固的增强学习),并表明它可以减少排放而无需预先培训,只需要三个小时的调试期。在三个不同的建筑能源模拟的实验中,我们显示珍珠在所有情况下都胜过现有的RBC,并且在所有情况下,流行的RL基线,在维持热舒适度的同时,将建筑物排放量降低了31%。
translated by 谷歌翻译
由于物体的异质尺度,肾脏病理图像的全面语义分割具有挑战性。例如,在整个幻灯片图像(WSI)上,肾小球的横截面区域的距离可能比周围毛细管的64倍,这使得以相同尺度上的同一贴片对两个对象进行分割是不切实际的。为了解决这个缩放问题,先前的研究通常已经训练了多个分割网络,以匹配异质组织类型的最佳像素分辨率。这种多网络解决方案是资源密集型的,无法对组织类型之间的空间关系进行建模。在本文中,我们提出了Omni-Seg+网络,这是一种通过单个神经网络实现多对象(六种组织类型)和多尺度(5倍至40倍尺度)的多尺度(5倍至40倍尺度)的动态神经网络。本文的贡献是三个方面的:(1)提出了一种新型的量表感知控制器,以将动态神经网络从单尺度到多尺度推广; (2)引入了伪标签的半监督一致性正规化,以建模未经注释的组织类型的尺度相关性成单个端到端的学习范式; (3)直接将在人类肾脏图像训练的模型中直接应用于小鼠肾脏图像,而无需再培训,就可以证明高尺度感知的概括。通过从三种不同分辨率下从六种组织类型中学习的约150,000个人类病理图像斑块,我们的方法根据人类的视觉评估和图像词的评估(即空间转录组学)获得了卓越的分割性能。官方实施可在https://github.com/ddrrnn123/omni-seg上获得。
translated by 谷歌翻译