媒体报道对公众对事件的看法具有重大影响。尽管如此,媒体媒体经常有偏见。偏见新闻文章的一种方法是改变选择一词。通过单词选择对偏见的自动识别是具有挑战性的,这主要是由于缺乏黄金标准数据集和高环境依赖性。本文介绍了Babe,这是由训练有素的专家创建的强大而多样化的数据集,用于媒体偏见研究。我们还分析了为什么专家标签在该域中至关重要。与现有工作相比,我们的数据集提供了更好的注释质量和更高的通知者协议。它由主题和插座之间平衡的3,700个句子组成,其中包含单词和句子级别上的媒体偏见标签。基于我们的数据,我们还引入了一种自动检测新闻文章中偏见的句子的方法。我们最佳性能基于BERT的模型是在由遥远标签组成的较大语料库中进行预训练的。对我们提出的监督数据集进行微调和评估模型,我们达到了0.804的宏F1得分,表现优于现有方法。
translated by 谷歌翻译
当客观报告代替主观写作时,诸如百科全书和新闻文章的参考文本可以表现出偏见的语言。现有方法检测偏差主要依赖于带注释的数据来训练机器学习模型。但是,低注释员协议和可比性是可用媒体偏见Corpora的实质性缺点。为了评估数据收集选项,我们收集和比较从两个流行的众包平台获得的标签。我们的结果展示了现有的众包缺乏数据质量,强调了培训的专家框架的需要收集更可靠的数据集。通过创建此类框架并收集第一个数据集,我们能够将Krippendorff的$ \ Alpha $ = 0.144(众群标签)提升为$ \ Alpha $ = 0.419(专家标签)。我们得出结论,详细的注释培训提高了数据质量,提高了现有偏置检测系统的性能。我们将来继续扩展我们的数据集。
translated by 谷歌翻译
Credit scoring models are the primary instrument used by financial institutions to manage credit risk. The scarcity of research on behavioral scoring is due to the difficult data access. Financial institutions have to maintain the privacy and security of borrowers' information refrain them from collaborating in research initiatives. In this work, we present a methodology that allows us to evaluate the performance of models trained with synthetic data when they are applied to real-world data. Our results show that synthetic data quality is increasingly poor when the number of attributes increases. However, creditworthiness assessment models trained with synthetic data show a reduction of 3\% of AUC and 6\% of KS when compared with models trained with real data. These results have a significant impact since they encourage credit risk investigation from synthetic data, making it possible to maintain borrowers' privacy and to address problems that until now have been hampered by the availability of information.
translated by 谷歌翻译
Novel topological spin textures, such as magnetic skyrmions, benefit from their inherent stability, acting as the ground state in several magnetic systems. In the current study of atomic monolayer magnetic materials, reasonable initial guesses are still needed to search for those magnetic patterns. This situation underlines the need to develop a more effective way to identify the ground states. To solve this problem, in this work, we propose a genetic-tunneling-driven variance-controlled optimization approach, which combines a local energy minimizer back-end and a metaheuristic global searching front-end. This algorithm is an effective optimization solution for searching for magnetic ground states at extremely low temperatures and is also robust for finding low-energy degenerated states at finite temperatures. We demonstrate here the success of this method in searching for magnetic ground states of 2D monolayer systems with both artificial and calculated interactions from density functional theory. It is also worth noting that the inherent concurrent property of this algorithm can significantly decrease the execution time. In conclusion, our proposed method builds a useful tool for low-dimensional magnetic system energy optimization.
translated by 谷歌翻译
This work presents a set of neural network (NN) models specifically designed for accurate and efficient fluid dynamics forecasting. In this work, we show how neural networks training can be improved by reducing data complexity through a modal decomposition technique called higher order dynamic mode decomposition (HODMD), which identifies the main structures inside flow dynamics and reconstructs the original flow using only these main structures. This reconstruction has the same number of samples and spatial dimension as the original flow, but with a less complex dynamics and preserving its main features. We also show the low computational cost required by the proposed NN models, both in their training and inference phases. The core idea of this work is to test the limits of applicability of deep learning models to data forecasting in complex fluid dynamics problems. Generalization capabilities of the models are demonstrated by using the same neural network architectures to forecast the future dynamics of four different multi-phase flows. Data sets used to train and test these deep learning models come from Direct Numerical Simulations (DNS) of these flows.
translated by 谷歌翻译
Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modelling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no labelled benchmark for this task. We address this gap by introducing continuous valence and arousal annotations for an existing dataset of children's stories annotated with discrete emotion categories. We collect additional annotations for this data and map the originally categorical labels to the valence and arousal space. Leveraging recent advances in Natural Language Processing, we propose a set of novel Transformer-based methods for predicting valence and arousal signals over the course of written stories. We explore several strategies for fine-tuning a pretrained ELECTRA model and study the benefits of considering a sentence's context when inferring its emotionality. Moreover, we experiment with additional LSTM and Transformer layers. The best configuration achieves a Concordance Correlation Coefficient (CCC) of .7338 for valence and .6302 for arousal on the test set, demonstrating the suitability of our proposed approach. Our code and additional annotations are made available at https://github.com/lc0197/emotion_modelling_stories.
translated by 谷歌翻译
Earthquakes, fire, and floods often cause structural collapses of buildings. The inspection of damaged buildings poses a high risk for emergency forces or is even impossible, though. We present three recent selected missions of the Robotics Task Force of the German Rescue Robotics Center, where both ground and aerial robots were used to explore destroyed buildings. We describe and reflect the missions as well as the lessons learned that have resulted from them. In order to make robots from research laboratories fit for real operations, realistic test environments were set up for outdoor and indoor use and tested in regular exercises by researchers and emergency forces. Based on this experience, the robots and their control software were significantly improved. Furthermore, top teams of researchers and first responders were formed, each with realistic assessments of the operational and practical suitability of robotic systems.
translated by 谷歌翻译
The study aims the development of a wearable device to combat the onslaught of covid-19. Likewise, to enhance the regular face shield available in the market. Furthermore, to raise awareness of the health and safety protocols initiated by the government and its affiliates in the enforcement of social distancing with the integration of computer vision algorithms. The wearable device was composed of various hardware and software components such as a transparent polycarbonate face shield, microprocessor, sensors, camera, thin-film transistor on-screen display, jumper wires, power bank, and python programming language. The algorithm incorporated in the study was object detection under computer vision machine learning. The front camera with OpenCV technology determines the distance of a person in front of the user. Utilizing TensorFlow, the target object identifies and detects the image or live feed to get its bounding boxes. The focal length lens requires the determination of the distance from the camera to the target object. To get the focal length, multiply the pixel width by the known distance and divide it by the known width (Rosebrock, 2020). The deployment of unit testing ensures that the parameters are valid in terms of design and specifications.
translated by 谷歌翻译
Machine-learning classifiers can be leveraged as a two-sample statistical test. Suppose each sample is assigned a different label and that a classifier can obtain a better-than-chance result discriminating them. In this case, we can infer that both samples originate from different populations. However, many types of models, such as neural networks, behave as a black-box for the user: they can reject that both samples originate from the same population, but they do not offer insight into how both samples differ. Self-Organizing Maps are a dimensionality reduction initially devised as a data visualization tool that displays emergent properties, being also useful for classification tasks. Since they can be used as classifiers, they can be used also as a two-sample statistical test. But since their original purpose is visualization, they can also offer insights.
translated by 谷歌翻译
We introduce hp-greedy, a refinement approach for building gravitational wave surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: i) representations of lower dimension with no loss of accuracy, ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of gravitational waves emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and ii) the search of gravitational waves through clustering and nearest neighbors.
translated by 谷歌翻译