对业务流程的预测监控是流程挖掘的子领域,旨在预测下一个事件的特征或下一个事件的序列。虽然已经提出了基于深度学习的多种方法,主要是经常发生的神经网络和卷积神经网络,但它们都不是真正利用过程模型中可用的结构信息。本文提出了一种基于图形卷积网络和经常性神经网络的方法,所述内部网络从过程模型中使用信息。真实事件日志的实验评估表明,我们的方法更加一致,更优于当前的最先进的方法。
translated by 谷歌翻译
移动屏幕的布局是UI设计研究和对屏幕的语义理解的关键数据源。但是,现有数据集中的UI布局通常是嘈杂的,具有与其视觉表示的不匹配,或者由难以分析和模型的通用或应用特定类型组成。在本文中,我们提出了使用深度学习方法的粘土管道,用于去噪UI布局,允许我们在比例下自动改进现有的移动UI布局数据集。我们的管道采用屏幕截图和原始UI布局,通过删除不正确的节点并向每个节点分配语义有意义的类型来注释原始布局。为了实验我们的数据清洁管道,我们根据来自Rico的截图和原始布局,创建59,555个人注释的屏幕布局的粘土数据集,该网站上是一个公共移动UI语料库。我们的深度模型可实现高精度,F1分数为82.7%,用于检测没有有效的视觉表示的布局对象,85.9%用于识别对象类型,这显着优于启发式基线。我们的工作为创建大规模高质量的UI布局数据集提供了用于数据驱动的移动UI研究的基础,并减少了手动标签的需要,这些努力非常昂贵。
translated by 谷歌翻译
论一般相对论中的长期分类问题,我们采用机器学习和现代数据科学的富有成效技术采取小说视角。特别是,我们模拟Petrov的分类时间的分类,并表明前馈神经网络可以实现高度的成功。我们还展示了数据可视化技术如何具有维度降低的技术可以帮助分析不同类型的刻度的结构中的底层图案。
translated by 谷歌翻译
确实,卷积神经网络(CNN)更合适。然而,固定内核大小使传统的CNN太具体,既不灵活也不有利于特征学习,从而影响分类准确性。不同内核大小网络的卷积可以通过捕获更多辨别和相关信息来克服这个问题。鉴于此,所提出的解决方案旨在将3D和2D成立网的核心思想与促进混合方案中的HSIC CNN性能提升。生成的\ Textit {注意融合混合网络}(AFNET)基于三个关注融合的并行混合子网,每个块中的不同内核使用高级功能,以增强最终的地面图。简而言之,AFNET能够选择性地过滤滤除对分类至关重要的辨别特征。与最先进的模型相比,HSI数据集的几次测试为AFNET提供了竞争力的结果。拟议的管道实现,实际上,印度松树的总体准确性为97 \%,博茨瓦纳100 \%,帕尔茨大学,帕维亚中心和萨利纳斯数据集的99 \%。
translated by 谷歌翻译
自行车共享系统(BSSS)作为创新的运输服务。鉴于这些系统致力于通过促进环境和经济可持续性以及改善人口的生活质量,这些系统致力于消除当前全球担忧的许多担忧,确保BSS的正常运作至关重要。良好的用户过渡模式知识是对服务的质量和可操作性的决定性贡献。类似的和不平衡的用户的过渡模式导致这些系统遭受自行车不平衡,从长远来看,导致客户损失很大。自行车重新平衡的策略变得重要,以解决这个问题,为此,自行车交通预测至关重要,因为它允许更有效地运行并提前做出反应。在这项工作中,我们提出了一种基于图形神经网络嵌入的自行车TRIPS预测因子,考虑到站分组,气象条件,地理距离和旅行模式。我们在纽约市BSS(CITIBIKE)数据中评估了我们的方法,并将其与四个基线进行比较,包括非聚类方法。为了解决我们的问题的特殊性,我们开发了自适应转换约束聚类加(ADATC +)算法,消除了以前的工作的缺点。我们的实验证据证据细胞化(88%的准确性,而无需聚类83%),哪种聚类技术最适合这个问题。对于ADATC +,链路预测任务的准确性总是较高,而不是基于基准群集方法,而当网站相同,虽然在升级网络时不会降低性能,但在训练有素的模型中不匹配。
translated by 谷歌翻译
在本文中,我们考虑“最短的超人问题”(SSP)或“最短常见的超级测试问题”(SCS)。问题如下。对于正整数$ N $,给出了一系列n字符串$ s =(s ^ 1,\ dots,s ^ n)$。我们应该构建最短的字符串$ t $(我们称之为IT Superstring),它包含来自给定序列的每个字符串作为子字符串。该问题与序列组装方法相关联,用于从小碎片重建长DNA序列。我们呈现了一个运行时间$ o ^ *(1.728 ^ n)$的量子算法。$ O ^ * $表示法不考虑$ n $的多项式和$ t $的长度。
translated by 谷歌翻译
我们概括了Furst等的“间接学习”技术。 al。,1991年,通过在可分配的分发$ \ mu $学习概念课程,以在统一分布上学习相同的概念类。当$ \ mu $的采样器均包含在目标概念类中,减少成功,在Impagliazzo&Luby的意义上有效地可逆于1989年。我们给出了两种应用。 - 我们展示了AC0 [Q]可以通过任何简洁描述的产品分发来学习。 AC0 [Q]是多项式大小的恒定深度布尔电路的类,或者,而不是,并不计算未绑定的粉丝的Modulo $ Q $ Q。我们的算法在随机的准多项式时间中运行,并使用会员查询。 - 如果在Razborov和Rudich 1997的意义上存在强烈有用的自然属性 - 一种可以区分无随机串和非级别电路复杂性的串的有效算法 - 那么一般多项式的布尔电路就可以在任何有效地学习可在随机多项式时间的可分配分布,给予目标函数的成员资格查询
translated by 谷歌翻译
脑转移经常发生在转移性癌症的患者中。早期和准确地检测脑转移对于放射治疗的治疗计划和预后至关重要。为了提高深入学习的脑转移检测性能,提出了一种称为体积级灵敏度特异性(VSS)的定制检测损失,该损失是单个转移检测灵敏度和(子)体积水平的特异性。作为敏感性和精度始终在转移水平中始终是折射率,可以通过调节VSS损耗中的重量而无需骰子分数系数进行分段转移来实现高精度或高精度。为了减少被检测为假阳性转移的转移样结构,提出了一种时间的现有量作为神经网络的额外输入。我们提出的VSS损失提高了脑转移检测的敏感性,将灵敏度提高了86.7%至95.5%。或者,它将精度提高了68.8%至97.8%。随着额外的时间现有量,在高灵敏度模型中,约45%的假阳性转移减少,高特异性模型的精度达到99.6%。所有转移的平均骰子系数约为0.81。随着高灵敏度和高特异性模型的集合,平均每位患者的1.5个假阳性转移需要进一步检查,而大多数真正的阳性转移确认。该集合学习能够区分从需要特殊专家审查或进一步跟进的转移候选人的高信心真正的阳性转移,特别适合实际临床实践中专家支持的要求。
translated by 谷歌翻译
高斯进程(GPS)是通过工程学的社会和自然科学的应用程序学习和统计数据的重要工具。它们构成具有良好校准的不确定性估计的强大的内核非参数方法,然而,由于其立方计算复杂度,从货架上的GP推理程序仅限于具有数千个数据点的数据集。因此,在过去几年中已经开发出许多稀疏的GPS技术。在本文中,我们专注于GP回归任务,并提出了一种基于来自几个本地和相关专家的聚合预测的新方法。因此,专家之间的相关程度可以在独立于完全相关的专家之间变化。考虑到他们的相关性导致了一致的不确定性估算,汇总了专家的个人预测。我们的方法在限制案件中恢复了专家的独立产品,稀疏GP和全GP。呈现的框架可以处理一般的内核函数和多个变量,并且具有时间和空间复杂性,在专家和数据样本的数量中是线性的,这使得我们的方法是高度可扩展的。我们展示了我们提出的方法的卓越性能,这是我们提出的综合性和几个实际数据集的最先进的GP近似方法的卓越性能,以及具有确定性和随机优化的若干现实世界数据集。
translated by 谷歌翻译
背景和目标。域移位是机器学习模型的泛化问题,当训练集的数据分布与模型部署时遇到的数据分布不同时发生的机器学习模型。由于实验条件,设备和捕获设置的方差,这在生物医学图像分段的背景下是常见的。在这项工作中,通过研究肿瘤球状体分割的神经风格转移算法和未配对的图像到图像转换方法来解决这一挑战。方法。我们已经在Spheroid Semonation的上下文中展示了具有4个深入学习分段模型的域移位问题,该模型在训练分布后的图像测试时实现了超过97%的IOU,但在应用于捕获的图像时,其性能下降到84 \%在不同的条件下。为了解决这个问题,我们已经探索了3种风格传输算法(NST,深图象类比和光刻),以及6个未配对的图像到图像转换算法(Compygan,Dualgan,Forkgan,Ganilla,Cut和FastCut) 。这些算法已集成到高级API中,其促进其应用于发生域移位问题的其他上下文。结果。当应用于在不同条件下捕获的图像通过使用样式传输和图像到图像转换算法时,我们大大提高了4分段模型的性能。特别是,有2个样式传输算法(NST和深图谱)和1个未配对的图像到图像转换算法(Cyclegan),可在0.24至76.07的范围内改善模型的IOO。因此,在训练分布之后应用于使用模型获得的类似的性能。
translated by 谷歌翻译