Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.
translated by 谷歌翻译
在过去的几年中,已经引入了许多基于输入数据扰动的解释方法,以提高我们对黑盒模型做出的决策的理解。这项工作的目的是引入一种新颖的扰动方案,以便可以获得更忠实和强大的解释。我们的研究重点是扰动方向对数据拓扑的影响。我们表明,在对离散的Gromov-Hausdorff距离的最坏情况分析以及通过持久的同源性的平均分析中,沿输入歧管的正交方向的扰动更好地保留了数据拓扑。从这些结果中,我们引入EMAP算法,实现正交扰动方案。我们的实验表明,EMAP不仅改善了解释者的性能,而且还可以帮助他们克服最近对基于扰动的方法的攻击。
translated by 谷歌翻译
Temporal Graph Neural Network (TGNN) has been receiving a lot of attention recently due to its capability in modeling time-evolving graph-related tasks. Similar to Graph Neural Networks, it is also non-trivial to interpret predictions made by a TGNN due to its black-box nature. A major approach tackling this problems in GNNs is by analyzing the model' responses on some perturbations of the model's inputs, called perturbation-based explanation methods. While these methods are convenient and flexible since they do not need internal access to the model, does this lack of internal access prevent them from revealing some important information of the predictions? Motivated by that question, this work studies the limit of some classes of perturbation-based explanation methods. Particularly, by constructing some specific instances of TGNNs, we show (i) node-perturbation cannot reliably identify the paths carrying out the prediction, (ii) edge-perturbation is not reliable in determining all nodes contributing to the prediction and (iii) perturbing both nodes and edges does not reliably help us identify the graph's components carrying out the temporal aggregation in TGNNs.
translated by 谷歌翻译
Artificial Intelligence (AI) and its data-centric branch of machine learning (ML) have greatly evolved over the last few decades. However, as AI is used increasingly in real world use cases, the importance of the interpretability of and accessibility to AI systems have become major research areas. The lack of interpretability of ML based systems is a major hindrance to widespread adoption of these powerful algorithms. This is due to many reasons including ethical and regulatory concerns, which have resulted in poorer adoption of ML in some areas. The recent past has seen a surge in research on interpretable ML. Generally, designing a ML system requires good domain understanding combined with expert knowledge. New techniques are emerging to improve ML accessibility through automated model design. This paper provides a review of the work done to improve interpretability and accessibility of machine learning in the context of global problems while also being relevant to developing countries. We review work under multiple levels of interpretability including scientific and mathematical interpretation, statistical interpretation and partial semantic interpretation. This review includes applications in three areas, namely food processing, agriculture and health.
translated by 谷歌翻译
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译
To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8,403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was done using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,{\theta}) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71+/-0.10 and pixel-wise sensitivity/specificity of 87.7+/-6.6%/99.8+/-0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5+/-0.3%, specificity of 98.8+/-1.0%, and accuracy of 99.1+/-0.5%. The classification step eliminated the majority of residual false positives, and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared to 730 from manual analysis, representing a 4.4% difference. When compared to the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.
translated by 谷歌翻译
3D Flash LiDAR是传统扫描激光雷达系统的替代方法,有望在紧凑的外形尺寸中进行精确的深度成像,并且没有运动部件,例如自动驾驶汽车,机器人技术和增强现实(AR)等应用。通常在图像传感器格式中使用单光子,直接飞行时间(DTOF)接收器实施,设备的操作可能会受到需要在室外场景中处理和压缩的大量光子事件的阻碍以及对较大数组的可扩展性。我们在这里提出了一个64x32像素(256x128 spad)DTOF成像器,该成像器通过将像素与嵌入式直方图使用像素一起克服这些局限性,该直方直方图锁定并跟踪返回信号。这大大降低了输出数据帧的大小,可在10 kfps范围内或100 kfps的最大帧速率进行直接深度读数。该传感器可选择性地读数检测表面或传感运动的像素,从而减少功耗和片外处理要求。我们演示了传感器在中端激光雷达中的应用。
translated by 谷歌翻译
有效的全球优化是一种广泛使用的方法,用于优化昂贵的黑盒功能,例如调谐参数,设计新材料等。尽管它很受欢迎,但鉴于其广泛使用,较少的关注来分析问题的固有硬度,重要的是要了解有效的全球优化算法的基本限制。在本文中,我们研究了有效的全球优化问题的最严重的复杂性,并且与现有的内核特异性结果相反,我们得出了一个统一的下限,以根据球的度量熵的指标,以实现有效的全局优化的复杂性在相应的繁殖内核希尔伯特空间〜(RKHS)中。具体而言,我们表明,如果存在确定性算法,该算法在$ t $函数评估中实现了任何函数$ f \ in s $ in s $ f \ in $ t $函数评估的次优差距,则有必要至少是$ \ omemega \ left(\ frac {\ log \ mathcal {n}(s(s(\ Mathcal {x})),4 \ epsilon,\ | \ | \ cdot \ cdot \ | _ \ iftty)} {\ log(\ frac {\ frac {r} {r} {\ epsilon {\ epsilon })}} \ right)$,其中$ \ mathcal {n}(\ cdot,\ cdot,\ cdot)$是覆盖号码,$ s $是$ 0 $ $ 0 $,RKHS中的RADIUS $ r $,并且$ s(\ mathcal {x})$是可行套装$ \ mathcal {x} $的$ s $的限制。此外,我们表明,这种下限几乎与常用平方指数核的非自适应搜索算法和具有较大平滑度参数$ \ nu $的垫子\'ern内核所获得的上限匹配,最多可替换为$ $ $ d/2 $ by $ d $和对数项$ \ log \ frac {r} {\ epsilon} $。也就是说,我们的下限对于这些内核几乎是最佳的。
translated by 谷歌翻译
尽管最近关于了解深神经网络(DNN)的研究,但关于DNN如何产生其预测的问题仍然存在许多问题。特别是,给定对不同输入样本的类似预测,基本机制是否会产生这些预测?在这项工作中,我们提出了Neucept,这是一种局部发现关键神经元的方法,该神经元在模型的预测中起着重要作用,并确定模型的机制在产生这些预测中。我们首先提出一个关键的神经元识别问题,以最大程度地提高相互信息目标的序列,并提供一个理论框架,以有效地解决关键神经元,同时控制精度。Neucept接下来以无监督的方式学习了不同模型的机制。我们的实验结果表明,Neucept鉴定的神经元不仅对模型的预测具有强大的影响,而且还具有有关模型机制的有意义的信息。
translated by 谷歌翻译