In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
The application of combinatorial optimization problems to solving the problems of planning processes for industries based on a fund of reconfigurable production resources is considered. The results of their solution by mixed integer programming methods are presented.
translated by 谷歌翻译
The International Atomic Energy Agency (IAEA) stopping power database is a highly valued public resource compiling most of the experimental measurements published over nearly a century. The database-accessible to the global scientific community-is continuously updated and has been extensively employed in theoretical and experimental research for more than 30 years. This work aims to employ machine learning algorithms on the 2021 IAEA database to predict accurate electronic stopping power cross sections for any ion and target combination in a wide range of incident energies. Unsupervised machine learning methods are applied to clean the database in an automated manner. These techniques purge the data by removing suspicious outliers and old isolated values. A large portion of the remaining data is used to train a deep neural network, while the rest is set aside, constituting the test set. The present work considers collisional systems only with atomic targets. The first version of the ESPNN (electronic stopping power neural-network code), openly available to users, is shown to yield predicted values in excellent agreement with the experimental results of the test set.
translated by 谷歌翻译
在本文中,我们提出了针对无人接地车辆(UGV)的新的控制屏障功能(CBF),该功能有助于避免与运动学(非零速度)障碍物发生冲突。尽管当前的CBF形式已经成功地保证了与静态障碍物的安全/碰撞避免安全性,但动态案例的扩展已获得有限的成功。此外,借助UGV模型,例如Unicycle或自行车,现有CBF的应用在控制方面是保守的,即在某些情况下不可能进行转向/推力控制。从经典的碰撞锥中汲取灵感来避免轨迹规划,我们介绍了其新颖的CBF配方,并具有对独轮车和自行车模型的安全性保证。主要思想是确保障碍物的速度W.R.T.车辆总是指向车辆。因此,我们构建了一个约束,该约束确保速度向量始终避开指向车辆的向量锥。这种新控制方法的功效在哥白尼移动机器人上进行了实验验证。我们将其进一步扩展到以自行车模型的形式扩展到自动驾驶汽车,并在Carla模拟器中的各种情况下证明了避免碰撞。
translated by 谷歌翻译
开发有效的自动分类器将真实来源与工件分开,对于宽场光学调查的瞬时随访至关重要。在图像差异过程之后,从减法伪像的瞬态检测鉴定是此类分类器的关键步骤,称为真实 - 博格斯分类问题。我们将自我监督的机器学习模型,深入的自组织地图(DESOM)应用于这个“真实的模拟”分类问题。 DESOM结合了自动编码器和一个自组织图以执行聚类,以根据其维度降低的表示形式来区分真实和虚假的检测。我们使用32x32归一化检测缩略图作为底部的输入。我们展示了不同的模型训练方法,并发现我们的最佳DESOM分类器显示出6.6%的检测率,假阳性率为1.5%。 Desom提供了一种更细微的方法来微调决策边界,以确定与其他类型的分类器(例如在神经网络或决策树上构建的)结合使用时可能进行的实际检测。我们还讨论了DESOM及其局限性的其他潜在用法。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
我们考虑在重复的未知游戏中进行规避风险的学习,在这种游戏中,代理商的目标是最大程度地减少其个人产生高成本的风险。具体而言,代理商使用处于风险的条件值(CVAR)作为风险措施,并以每集选定动作的成本值的形式依靠强盗反馈来估算其CVAR值并更新其动作。使用匪徒反馈来估计CVAR的一个主要挑战是,代理只能访问其自身的成本值,但是,这取决于所有代理的行为。为了应对这一挑战,我们提出了一种新的规避风险的学习算法,并利用有关成本价值的完整历史信息。我们表明,该算法实现了子线性的遗憾,并匹配了文献中最著名的算法。我们为欧洲大师游戏提供了数值实验,该游戏表明我们的方法表现优于现有方法。
translated by 谷歌翻译
移动服务机器人变得越来越无处不在。但是,这些机器人可能对视觉障碍者(PVI)提出潜在的可访问性问题和安全问题。我们试图探索PVI在主流移动服务机器人方面面临的挑战,并确定其需求。对他们在三个新兴机器人的经历进行了采访,接受了17个PVI:真空机器人,送货机器人和无人机。我们通过考虑其围绕机器人的不同角色(直接用户和旁观者)来全面研究PVI的机器人体验。我们的研究强调了参与者对移动服务机器人访问性,安全性和隐私问题的挑战和担忧。我们发现缺乏可访问的反馈使PVI难以精确控制,定位和跟踪机器人的状态。此外,遇到移动机器人时,旁观者感到困惑,甚至吓到参与者,并呈现安全性和隐私障碍。我们进一步提炼设计注意事项,以提供PVI的更容易访问和安全的机器人。
translated by 谷歌翻译
无人驾驶汽车(UAV)在许多领域都受雇于摄影,紧急,娱乐,国防,农业,林业,采矿和建筑。在过去的十年中,无人机技术在许多施工项目阶段中找到了应用程序,从现场映射,进度监控,建筑物检查,损坏评估和材料交付等等。尽管已经对无人机在各种施工相关的过程中的优势进行了广泛的研究,但关于提高任务能力和效率的无人机协作的研究仍然很少。本文提出了一种基于塔格狩猎游戏和粒子群优化(PSO)的多个无人机的新合作路径计划算法。首先,定义了每个无人机的成本函数,并包含多个目标和约束。然后,开发了无人机游戏框架,以将多功能路径计划制定到寻找回报优势均衡的问题。接下来,提出了基于PSO的算法来获得无人机的最佳路径。由三个无人机检查的大型建筑工地的仿真结果表明,在检查任务期间,提出的算法在为无人机形成的可行和高效飞行路径生成可行,高效的飞行路径上的有效性。
translated by 谷歌翻译