常规的多视图聚类试图基于所有观点的假设,以完全观察到所有观点的假设。但是,在诸如疾病诊断,多媒体分析和建议系统之类的实际应用中,常见的是,在许多情况下,并非所有样品的观点都可以使用,这导致常规多视图聚类方法的失败。在此不完整的多视图数据上的聚类称为不完整的多视图聚类。鉴于有前途的应用前景,近年来对不完整的多视图聚类的研究取得了明显的进步。但是,没有调查可以总结当前的进展并指出未来的研究方向。为此,我们回顾了最新的关于多视图聚类的研究。重要的是,我们提供一些框架来统一相应的不完整的多视图聚类方法,并从理论和实验角度对某些代表性方法进行深入的比较分析。最后,为研究人员提供了不完整的多视图聚类领域中的一些开放问题。
translated by 谷歌翻译
隐式神经表示显示了3D场景重建的有希望的潜力。最近的工作将其应用于自主3D重建,通过学习信息获得图路径计划的信息增益。有效,信息增益的计算很昂贵,并且与使用体积表示相比,使用隐式表示为3D点进行碰撞检查要慢得多。在本文中,我们建议1)利用神经网络作为信息增益场的隐式函数近似器,以及2)将隐式细粒表示与粗量表示形式结合起来,以提高效率。随着效率的提高,我们提出了基于基于图的计划者的新型信息路径计划。我们的方法表明,与具有隐性和明确表示的自主重建相比,重建质量和计划效率的显着提高。我们将该方法部署在真正的无人机上,结果表明我们的方法可以计划信息意见并以高质量重建场景。
translated by 谷歌翻译
现有的广告点击率(CTR)预测模型主要取决于行为ID功能,这些功能是根据历史用户AD交互所学习的。然而,依赖历史用户行为的行为ID功能是不可行的,可以在没有以前与用户互动的情况下描述新广告。为了克服对新广告建模的行为ID特征的局限性,我们利用广告中的视觉内容来提高CTR预测模型的性能。具体来说,我们根据其视觉内容将每个广告映射到一组视觉ID中。这些视觉ID进一步用于生成可视觉嵌入,以增强CTR预测模型。我们将视觉ID的学习分为有监督的量化问题。由于缺乏广告中商业图像的类标签,因此我们利用图像文本描述作为监督,以优化图像提取器以生成有效的视觉ID。同时,由于硬量化是不可差异的,因此我们软化量化操作以使其支持端到端网络培训。将每个图像映射到视觉ID之后,我们根据过去积累的历史用户AD交互学习每个视觉ID的嵌入。由于视觉ID嵌入仅取决于视觉内容,因此它概括为新广告。同时,嵌入视觉ID补充了AD行为ID嵌入。因此,它可以大大提高CTR预测模型的性能,以前依赖于积累了丰富用户行为的新广告和广告的行为ID功能。将视觉ID嵌入在BAIDU在线广告的CTR预测模型中后,AD的平均CTR提高了1.46%,总费用增加了1.10%。
translated by 谷歌翻译
组织了伽马挑战赛,以鼓励AI模型从2D眼睛图像和3D光学相干断层扫描量的组合(如眼科医生)中筛选出青光眼。
translated by 谷歌翻译
通过网络视频的快速增长,视频语言建模引起了很多关注。大多数现有方法都假定视频帧和文本描述是语义上关联的,并专注于视频级别的视频模型。但是,该假设通常是有两个原因的:(1)凭借视频内容丰富的语义,很难用单个视频级别的描述覆盖所有帧; (2)原始视频通常具有嘈杂/毫无意义的信息(例如,镜头,过渡或预告片)。尽管最近的许多作品部署了注意力来减轻此问题,但无关/嘈杂的信息仍然使得很难解决。为了克服此类挑战,我们提出了一个高效有效的模型,称为语言引导网络(LGDN),用于视频语言建模。与使用所有提取的视频帧的大多数现有方法不同,LGDN在语言监督下动态过滤了未对准或冗余的帧,并且每个视频仅获得2---4个显着帧,以进行交叉模式令牌级别的对准。在五个公共数据集上进行的广泛实验表明,我们的LGDN优于最先进的利润率。我们还提供了详细的消融研究,以揭示解决噪声问题的关键重要性,以启发未来的视频语言工作。
translated by 谷歌翻译
尽管进行了数十年的研究,但现有的导航系统在野外部署时仍然面临现实世界中的挑战,例如在混乱的家庭环境或人类占领的公共场所中。为了解决这个问题,我们提出了一类新的隐式控制政策,将模仿学习的好处与模型预测控制(MPC)的系统约束的强大处理结合在一起。我们的方法称为Performer-MPC,使用了通过表演者提供的视觉上下文嵌入的学习成本函数(一种低级隐式意见变压器)。我们共同训练成本函数并构建依靠它的控制器,有效地端到端解决相应的双层优化问题。我们表明,由此产生的策略通过利用一些在不同挑战的现实世界情景中利用一些专家演示来提高标准MPC绩效。与标准的MPC政策相比,表演者MPC在混乱的环境中实现了40%的目标,而在人类浏览时,社交指标的目标> 65%。
translated by 谷歌翻译
为了解决数学单词问题,人类学生利用达到不同方程解决方案的各种推理逻辑。但是,自动求解器的主流序列到序列方法旨在解码通过人类注释监督的固定溶液方程。在本文中,我们通过利用一组控制代码来指导模型考虑某些推理逻辑并解码从人类参考转换的相应方程式表达式来指导模型来考虑某些推理逻辑并解码相应的方程式表达式来提出一个受控方程生成求解器。经验结果表明,我们的方法普遍提高了单人(MATH23K)和多项(draw1k,hmwp)基准的性能,在具有挑战性的多重未知数据集上,高达13.2%的准确性。
translated by 谷歌翻译
大型语言模型(LLM)从人类的指示中解开了任务计划的新功能。但是,事先尝试将LLMS应用于现实世界的机器人任务受到周围场景中缺乏接地的限制。在本文中,我们开发了NLMAP,这是一个开放式摄影和可查询场景表示,以解决此问题。 NLMAP是一个框架,可以将上下文信息收集到LLM计划者中,从而在生成上下文条件条件计划之前,可以在场景中查看和查询可用的对象。 NLMAP首先使用视觉语言模型(VLM)建立自然语言可查询场景表示。基于LLM的对象建议模块解析指令并提出涉及的对象,以查询场景表示以获取对象可用性和位置。然后,LLM规划师计划提供有关场景的此类信息。 NLMAP允许机器人在没有固定的对象列表或可执行选项的情况下操作,从而使真实的机器人操作无法通过以前的方法实现。项目网站:https://nlmap-saycan.github.io
translated by 谷歌翻译
通信技术的进步和智能手机的普及促进了视频广告的蓬勃发展。百度是世界领先的搜索引擎公司之一,每天收到数十亿个搜索查询。如何将视频广告与用户搜索配对是百度视频广告的核心任务。由于模态差距,比传统查询对象检索和图像到图像搜索更具挑战性的查询性检索更具挑战性。传统上,查询到视频检索是通过查询到标题检索来解决的,当瓷砖的质量不高时,这是不可靠的。近年来,随着计算机视觉和自然语言处理的快速进展,基于内容的搜索方法变得有望在查询到视频检索中。受益于大规模数据集的预处理,一些基于跨模式关注的Visionbert方法在许多视觉语言任务中不仅在学术界而且在行业中都取得了出色的表现。然而,跨模式关注的昂贵计算成本使得在工业应用中进行大规模搜索是不切实际的。在这项工作中,我们提出了一个基于树的组合注意网络(TCAN),该网络最近在百度的动态视频广告平台上推出。它提供了一种实用的解决方案,可以在大规模查询到视频搜索中部署大量的跨模式关注。在启动基于树的组合注意网络之后,点击率提高了2.29 \%,转化率提高了2.63 \%。
translated by 谷歌翻译
我们为平面姿势图优化提供了一个强大的框架,该框架被环闭合离群值污染。我们的框架首先将截短的最小二乘内核包裹的强大的PGO问题拒绝了异常值,从而拒绝了异常值。然后,该框架引入了线性角度表示,以重写最初用旋转矩阵配制的第一个子问题。该框架配置为渐变的非凸度(GNC)算法,以连续解决两个非凸子问题,而无需初始猜测。得益于两个子问题的线性属性,我们的框架只需要线性求解器才能最佳地解决GNC中遇到的优化问题。我们在平面PGO基准中广泛验证了所提出的框架,称为Degnc-Laf(脱钩的非跨性别量均具有线性角度公式)。事实证明,它比标准和通用GNC的速度显着(有时达到30倍以上),同时导致高质量的估计值。
translated by 谷歌翻译