We present edBB-Demo, a demonstrator of an AI-powered research platform for student monitoring in remote education. The edBB platform aims to study the challenges associated to user recognition and behavior understanding in digital platforms. This platform has been developed for data collection, acquiring signals from a variety of sensors including keyboard, mouse, webcam, microphone, smartwatch, and an Electroencephalography band. The information captured from the sensors during the student sessions is modelled in a multimodal learning framework. The demonstrator includes: i) Biometric user authentication in an unsupervised environment; ii) Human action recognition based on remote video analysis; iii) Heart rate estimation from webcam video; and iv) Attention level estimation from facial expression analysis.
translated by 谷歌翻译
脑小血管疾病的成像标记提供了有关脑部健康的宝贵信息,但是它们的手动评估既耗时又受到实质性内部和间际变异性的阻碍。自动化评级可能受益于生物医学研究以及临床评估,但是现有算法的诊断可靠性尚不清楚。在这里,我们介绍了\ textIt {血管病变检测和分割}(\ textit {v textit {where valdo?})挑战,该挑战是在国际医学图像计算和计算机辅助干预措施(MICCAI)的卫星事件中运行的挑战(MICCAI) 2021.这一挑战旨在促进大脑小血管疾病的小而稀疏成像标记的自动检测和分割方法的开发,即周围空间扩大(EPVS)(任务1),脑微粒(任务2)和预先塑造的鞋类血管起源(任务3),同时利用弱和嘈杂的标签。总体而言,有12个团队参与了针对一个或多个任务的解决方案的挑战(任务1 -EPVS 4,任务2 -Microbleeds的9个,任务3 -lacunes的6个)。多方数据都用于培训和评估。结果表明,整个团队和跨任务的性能都有很大的差异,对于任务1- EPV和任务2-微型微型且对任务3 -lacunes尚无实际的结果,其结果尤其有望。它还强调了可能阻止个人级别使用的情况的性能不一致,同时仍证明在人群层面上有用。
translated by 谷歌翻译
在本文中,我们开发FaceQVEC,一种软件组件,用于估计ISO / IEC 19794-5中所考虑的每个要点的面部图像的符合性,这是一个质量标准,该标准定义了将它们可接受或不可接受的面部图像的一般质量指南用于官方文件,如护照或身份证。这种质量评估的工具可以有助于提高面部识别的准确性,并确定哪些因素影响给定的面部图像的质量,并采取行动消除或减少这些因素,例如,具有后处理技术或重新获取图像。 FaceQVEC由与上述标准中预期的不同点相关的25个单独测试的自动化,以及被认为与面部质量有关的图像的其他特征。我们首先包括在现实条件下捕获的开发数据集上评估的质量测试的结果。我们使用这些结果来调整每个测试的判定阈值。然后,我们再次在评估数据库中再次检查,该评估数据库包含在开发期间未见的新脸部图像。评估结果展示了个人测试的准确性,用于检查遵守ISO / IEC 19794-5。 Faceqvec可在线获取(https://github.com/uam-biometrics/faceqvec)。
translated by 谷歌翻译
This paper presents a machine learning approach to multidimensional item response theory (MIRT), a class of latent factor models that can be used to model and predict student performance from observed assessment data. Inspired by collaborative filtering, we define a general class of models that includes many MIRT models. We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model. This model evaluation process can be optimized using batching techniques, such that even sparse large-scale data can be analyzed efficiently. We illustrate our approach with simulated and real data, including an example from a massive open online course (MOOC). The high-dimensional model fit to this large and sparse dataset does not lend itself well to traditional methods of factor interpretation. By analogy to recommender-system applications, we propose an alternative "validation" of the factor model, using auxiliary information about the popularity of items consulted during an open-book exam in the course.
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
Ithaca is a Fuzzy Logic (FL) plugin for developing artificial intelligence systems within the Unity game engine. Its goal is to provide an intuitive and natural way to build advanced artificial intelligence systems, making the implementation of such a system faster and more affordable. The software is made up by a C\# framework and an Application Programming Interface (API) for writing inference systems, as well as a set of tools for graphic development and debugging. Additionally, a Fuzzy Control Language (FCL) parser is provided in order to import systems previously defined using this standard.
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
Using Structural Health Monitoring (SHM) systems with extensive sensing arrangements on every civil structure can be costly and impractical. Various concepts have been introduced to alleviate such difficulties, such as Population-based SHM (PBSHM). Nevertheless, the studies presented in the literature do not adequately address the challenge of accessing the information on different structural states (conditions) of dissimilar civil structures. The study herein introduces a novel framework named Structural State Translation (SST), which aims to estimate the response data of different civil structures based on the information obtained from a dissimilar structure. SST can be defined as Translating a state of one civil structure to another state after discovering and learning the domain-invariant representation in the source domains of a dissimilar civil structure. SST employs a Domain-Generalized Cycle-Generative (DGCG) model to learn the domain-invariant representation in the acceleration datasets obtained from a numeric bridge structure that is in two different structural conditions. In other words, the model is tested on three dissimilar numeric bridge models to translate their structural conditions. The evaluation results of SST via Mean Magnitude-Squared Coherence (MMSC) and modal identifiers showed that the translated bridge states (synthetic states) are significantly similar to the real ones. As such, the minimum and maximum average MMSC values of real and translated bridge states are 91.2% and 97.1%, the minimum and the maximum difference in natural frequencies are 5.71% and 0%, and the minimum and maximum Modal Assurance Criterion (MAC) values are 0.998 and 0.870. This study is critical for data scarcity and PBSHM, as it demonstrates that it is possible to obtain data from structures while the structure is actually in a different condition or state.
translated by 谷歌翻译
Data deprivation, or the lack of easily available and actionable information on the well-being of individuals, is a significant challenge for the developing world and an impediment to the design and operationalization of policies intended to alleviate poverty. In this paper we explore the suitability of data derived from OpenStreetMap to proxy for the location of two crucial public services: schools and health clinics. Thanks to the efforts of thousands of digital humanitarians, online mapping repositories such as OpenStreetMap contain millions of records on buildings and other structures, delineating both their location and often their use. Unfortunately much of this data is locked in complex, unstructured text rendering it seemingly unsuitable for classifying schools or clinics. We apply a scalable, unsupervised learning method to unlabeled OpenStreetMap building data to extract the location of schools and health clinics in ten countries in Africa. We find the topic modeling approach greatly improves performance versus reliance on structured keys alone. We validate our results by comparing schools and clinics identified by our OSM method versus those identified by the WHO, and describe OSM coverage gaps more broadly.
translated by 谷歌翻译