我们的艺术家和机器学习研究团队设计了一种创造性算法,可以生成真正的雕塑艺术品。这些艺术品不会模仿任何给定的形式,也不能轻易归类为数据集类别。我们的方法将DeepDream从图像扩展到3D点云。提出的算法,Amalgamated DeepDream(ADD),利用点云的属性来创建比天真扩展更好的对象.ADD为机器的创造力提供了希望,推动艺术家探索新方法或材料的创造力,并创造新的类型而不是在onegenre中创建现有表单或样式的变体。例如,从现实主义到抽象表现主义,或极简主义。最后,我们展示了基于ADD创建的点云进行3D打印的雕塑。
translated by 谷歌翻译
车辆重新识别是一个重要的问题,随着视频监控和智能传输应用的快速扩展而变得可取。通过回顾人类视觉的识别过程,我们发现当人类识别不同的车辆时存在本地的等级依赖性。具体地,人类总是首先确定一个车辆的粗粒度类别,即汽车模型/类型。然后,在预测的汽车模型/类型的分支下,他们将通过细微的视觉线索(例如,定制的绘画和挡风玻璃)在细粒度水平上识别特定的车辆。受粗到细分层过程的启发,我们提出了一种用于车辆重新识别的端到端基于RNN的分层注意(RNN-HA)分类模型。 RNN-HA由三个相互耦合的模块组成:第一个模块生成车辆图像的图像表示,第二个层次模块模拟上述层级依赖关系,最后一个注意模块侧重于捕获特定车辆彼此之间的细微视觉信息识别。通过对两个车辆重新识别基准数据集VeRi和VehicleID进行全面的实验,我们证明了所提出的模型实现了超越现有技术的卓越性能。
translated by 谷歌翻译
我们提出了MedSim,一种基于Publicwell建立的生物医学知识图(KGs)和大规模语料库的新型语义相似性方法,研究抗生素的治疗替代。除了KGs的层次结构和语料库外,MedSim还通过构建多维医学特定的特征向量来进一步解释医学特征。采用医生评分的528种抗生素对数据集进行评价,MedSim与其他语义相似性方法相比具有统计学上的显着改善。此外,还提出了MedSim在药物替代和药物滥用预防方面的一些有希望的应用。
translated by 谷歌翻译
近十年来,随着深度卷积神经网络(CNN)的发展,许多最先进的图像分类和音频分类算法取得了显着的成功。但是,大多数工作只利用单一类型的训练数据。在本文中,我们通过利用CNN对视觉(图像)和音频(声音)数据的组合来对鸟类进行分类的研究,该CNN已被稀疏地处理。具体而言,我们提出了基于CNN的融合策略(早期,中期,晚期)类型的多模态学习模型,以解决组合训练数据跨域的问题。我们提出的方法的优点在于我们可以利用CNN不仅从图像和音频数据(频谱图)中提取特征,而且还可以跨特征模式组合特征。在实验中,我们在综合CUB-200-2011标准数据集上训练和评估网络结构,结合我们最初收集的关于数据种类的音频数据集。我们观察到,利用两种数据的组合的模型优于仅用任何类型的数据训练的模型。我们还表明,转移学习可以显着提高分类性能。
translated by 谷歌翻译
MixUp是一种通过混合随机样本的数据增强方法,已经显示出能够显着提高当前深度神经网络技术的预测准确性。然而,MixUp的力量大多是凭经验建立的,其工作和有效性在任何深度都没有解释。在本文中,我们对MixUp进行了理论上的理解,将其作为流形外正则化的一种形式,它将输入空间上的模型限制在数据流形之外。这项分析研究还使我们能够识别由流形侵入引起的MixUp限制,合成样本与歧管的实际例子相撞。这种侵入行为导致过度正规化,从而不合适。为了解决这个问题,我们进一步提出了一种新颖的正则化器,其中混合策略从数据中自适应地学习,并且包含多种入侵损失以避免与数据流形的冲突。我们使用几个基准数据集凭经验证明了我们的正则化器在超深度分类模型和MixUp的过度避免和精度改进方面的有效性。
translated by 谷歌翻译
通过主动选择小批量,可以提高随机梯度下降(SGD)的收敛速度。我们探索了在同一小批量中不太可能选择类似数据点的抽样方案。特别是,我们证明这种排斥采样方案降低了梯度测量仪的方差。这概括了最近关于将小批量多样化(Zhang et al。,2017)的决定点过程(DPP)用于更广泛的排斥点过程的工作。我们首先表明,通过多样化抽样的方差减少现象特别推广到非平稳点过程。然后,我们表明其他点过程在计算上可能比DPP更有效。特别是,我们提出并研究了泊松盘采样---计算机图形社交中经常遇到的---用于此任务。我们凭经验证明,我们的方法在收敛速度和最终模型性能方面都提高了标准SGD。
translated by 谷歌翻译
为了诊断黑素瘤,苏木精和曙红(H&E)染色的组织切片仍然是金标准。这些图像包含无关放大的定量信息。在本研究中,我们研究了深层卷积神经网络是否能够以修补的方式直接从这些大尺寸图像中提取互补文本的结构特征。为了应对组织病理学滑体形态多样性带来的挑战,我们建立了一个多中心数据库,包括来自2008年至2018年的132名患者的2241个数字全幻灯片图像。我们通过转移学习和测试性能,使用超过995万个补丁训练ResNet50和Vgg19两种关键分类:恶性黑色素瘤与良性痣不相关和混合放大;并在最大放大率中区分痣。 CNN在两个任务中都实现了卓越的性能,证明了能够根据病理学图像分析皮肤癌的AI。为了使分类合理,CNN表示的可视化还用于识别黑素瘤和痣之间的细胞。感兴趣的区域(ROI)也位于显着有用的位置,为病理学家提供了更多正确诊断的支持。
translated by 谷歌翻译
越来越多的土木工程应用正在利用从配备传感设备的基础设施中获取的数据。该数据在监测这些结构对激发的响应和评估结构健康方面具有重要作用。在本文中,我们试图使用应变和加速数据监测行人天桥上的行人事件(例如行走的人)。这种数据采集的速率和传感装置的数量使得这些数据的存储和分析成为一项计算挑战。我们引入了一种压缩传感器数据的流式传输方法,同时保留了与行人事件相对应的关键模式和特征(对于不同的传感器类型是唯一的) 。通过对行人天桥上的应变传感器和加速度计获得的数据的方法的数值演示被提供以显示在行人事件期间和之间的压缩和准确度之间的权衡。
translated by 谷歌翻译
由于其不适定的性质,单图像去雾是一个具有挑战性的问题。现有的方法依赖于次优的两步法,其中估计像深度图这样的中间产品,基于该中间产品随后使用人工生成无雾图像。先前的公式。在本文中,我们提出了一个名为LDTNet的轻型双任务神经网络,可以一次性恢复无阴影图像。我们使用传输图估计作为辅助任务来辅助主要任务,雾霾去除,特征提取和增强网络的泛化。在LDTNet中,同时产生无雾图像和透射图。结果,人工原因减少到最小程度。大量实验表明,我们的算法在合成和真实世界图像上都能够达到最先进的方法。
translated by 谷歌翻译
对于感兴趣的产品,我们提出了一种表示一组参考产品的搜索方法。参考产品可用作支持下游建模任务和业务应用程序的候选者。搜索方法包括产品表示学习和指纹型矢量搜索。通过新颖的注意自动编码器神经网络将产品目录信息转换为高质量的低维度嵌入,并且嵌入还与二进制编码向量相结合以便快速检索。我们通过大量实验来评估所提出的方法,并将其与同行服务进行比较,以证明其在搜索返回率和精度方面的优势。
translated by 谷歌翻译