The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译
Recently, CLIP has been applied to pixel-level zero-shot learning tasks via a two-stage scheme. The general idea is to first generate class-agnostic region proposals and then feed the cropped proposal regions to CLIP to utilize its image-level zero-shot classification capability. While effective, such a scheme requires two image encoders, one for proposal generation and one for CLIP, leading to a complicated pipeline and high computational cost. In this work, we pursue a simpler-and-efficient one-stage solution that directly extends CLIP's zero-shot prediction capability from image to pixel level. Our investigation starts with a straightforward extension as our baseline that generates semantic masks by comparing the similarity between text and patch embeddings extracted from CLIP. However, such a paradigm could heavily overfit the seen classes and fail to generalize to unseen classes. To handle this issue, we propose three simple-but-effective designs and figure out that they can significantly retain the inherent zero-shot capacity of CLIP and improve pixel-level generalization ability. Incorporating those modifications leads to an efficient zero-shot semantic segmentation system called ZegCLIP. Through extensive experiments on three public benchmarks, ZegCLIP demonstrates superior performance, outperforming the state-of-the-art methods by a large margin under both "inductive" and "transductive" zero-shot settings. In addition, compared with the two-stage method, our one-stage ZegCLIP achieves a speedup of about 5 times faster during inference. We release the code at https://github.com/ZiqinZhou66/ZegCLIP.git.
translated by 谷歌翻译
In the current person Re-identification (ReID) methods, most domain generalization works focus on dealing with style differences between domains while largely ignoring unpredictable camera view change, which we identify as another major factor leading to a poor generalization of ReID methods. To tackle the viewpoint change, this work proposes to use a 3D dense pose estimation model and a texture mapping module to map the pedestrian images to canonical view images. Due to the imperfection of the texture mapping module, the canonical view images may lose the discriminative detail clues from the original images, and thus directly using them for ReID will inevitably result in poor performance. To handle this issue, we propose to fuse the original image and canonical view image via a transformer-based module. The key insight of this design is that the cross-attention mechanism in the transformer could be an ideal solution to align the discriminative texture clues from the original image with the canonical view image, which could compensate for the low-quality texture information of the canonical view image. Through extensive experiments, we show that our method can lead to superior performance over the existing approaches in various evaluation settings.
translated by 谷歌翻译
众所周知,深度神经网络具有很强的合适能力,即使使用随机分配的类标签,也可以轻松达到较低的训练错误。当训练样本的数量很少,或类标签嘈杂时,网络倾向于记住特定于单个实例的模式,以最大程度地减少训练错误。这导致了过度拟合和泛化性能不佳的问题。本文通过抑制网络依靠特定实例模式以最小化的实例模式来探讨一种补救措施。提出的方法基于对抗性训练框架。它抑制了可以利用的功能来识别每个类中样本之间的单个实例。这导致分类器仅使用各个类别和每个类中常见的功能。我们称我们的方法对对抗性特征(ASIF)的对抗性抑制,并在面对小数据集或嘈杂标签时演示了该技术在提高概括精度中的有用性。我们的源代码可用。
translated by 谷歌翻译
方面情感三胞胎提取(ASTE)旨在提取方面,意见及其情感关系作为情感三胞胎的跨度。现有的作品通常将跨度检测作为1D令牌标记问题制定,并使用令牌对的2D标记矩阵对情感识别进行建模。此外,通过利用诸如伯特(Bert)之类的审计语言编码器(PLES)的代表形式,它们可以实现更好的性能。但是,他们只是利用将功能提取器作为提取器来构建其模块,但从未深入了解特定知识所包含的内容。在本文中,我们争辩说,与其进一步设计模块以捕获ASTE的电感偏见,不如包含“足够”的“足够”功能,用于1D和2D标记:(1)令牌表示包含令牌本身的上下文含义,因此此级别,因此此级别功能带有必要的信息以进行1D标记。 (2)不同PLE层的注意力矩阵可以进一步捕获令牌对中存在的多层次语言知识,从而使2D标记受益。 (3)此外,对于简单的转换,这两个功能也可以很容易地转换为2D标记矩阵和1D标记序列。这将进一步提高标签结果。通过这样做,PLE可以是自然的标记框架并实现新的最新状态,通过广泛的实验和深入分析来验证。
translated by 谷歌翻译
Open-World实例细分(OWIS)旨在从图像中分割类不足的实例,该图像具有广泛的现实应用程序,例如自主驾驶。大多数现有方法遵循两阶段的管道:首先执行类不足的检测,然后再进行特定于类的掩模分段。相比之下,本文提出了一个单阶段框架,以直接为每个实例生成掩码。另外,实例掩码注释在现有数据集中可能很吵。为了克服这个问题,我们引入了新的正规化损失。具体而言,我们首先训练一个额外的分支来执行预测前景区域的辅助任务(即属于任何对象实例的区域),然后鼓励辅助分支的预测与实例掩码的预测一致。关键的见解是,这种交叉任务一致性损失可以充当误差校正机制,以打击注释中的错误。此外,我们发现所提出的跨任务一致性损失可以应用于图像,而无需任何注释,将自己借给了半监督的学习方法。通过广泛的实验,我们证明了所提出的方法可以在完全监督和半监督的设置中获得令人印象深刻的结果。与SOTA方法相比,所提出的方法将$ ap_ {100} $得分提高了4.75 \%\%\%\ rightarrow $ uvo设置和4.05 \%\%\%\%\%\%\ rightarrow $ uvo设置。在半监督学习的情况下,我们的模型仅使用30 \%标记的数据学习,甚至超过了其完全监督的数据,并具有5​​0 \%标记的数据。该代码将很快发布。
translated by 谷歌翻译
细粒度视觉识别的挑战通常在于发现关键的歧视区域。虽然可以从大规模标记的数据集中自动识别此类区域,但是当仅提供少量注释时,类似的方法可能会降低效率。在低数据制度中,网络通常很难选择正确的区域以识别识别,并且倾向于从培训数据中过度拟合虚假的相关模式。为了解决这个问题,本文提出了一种自我提升的注意机制,这是一种新颖的方法,可以使网络正规化关注跨样本和类共享的关键区域。具体而言,提出的方法首先为每个训练图像生成一个注意图,突出显示用于识别地面真实对象类别的判别零件。然后将生成的注意图用作伪通量。该网络被执行以适合它们作为辅助任务。我们将这种方法称为自我增强注意机制(SAM)。我们还通过使用SAM创建多个注意地图来开发一个变体,以泳池卷积图的样式,以双线性合并,称为SAM双线性。通过广泛的实验研究,我们表明两种方法都可以显着提高低数据状态上的细粒度视觉识别性能,并可以纳入现有的网络体系结构中。源代码可公开可用:https://github.com/ganperf/sam
translated by 谷歌翻译
对比性语言图像预训练(剪辑)模型是最近提出的大规模训练模型,它吸引了计算机视觉社区越来越多的关注。从其巨大的图像文本训练集中受益,剪辑模型在零拍学习和图像文本匹配方面学习了出色的功能。为了提高剪辑在某些目标视觉概念上的识别性能,通常希望通过在额外的培训数据上微调一些利益来进一步更新剪辑模型。但是,此操作引起了一个重要的关注:更新会损害零镜头学习或剪辑的图像文本匹配能力,即灾难性的遗忘问题吗?如果是,是否可以适应现有的持续学习算法来减轻灾难性遗忘的风险?为了回答这些问题,这项工作对剪辑模型的持续学习问题进行了系统性研究。我们构建评估协议,以衡量微调更新的影响,并探索不同的方法来升级现有的持续学习方法,以减轻剪辑模型的遗忘问题。我们的研究揭示了剪辑持续学习问题的特殊挑战,并为进一步的研究奠定了基础。此外,我们提出了一种新算法,被称为学习,而无需通过重播词汇(VR-LWF)忘记,该算法显示出减轻剪辑模型遗忘问题的确切有效性。
translated by 谷歌翻译
开放式综合分割(OPS)问题是一个新的研究方向,旨在对\已知类别和\未知类进行细分,即在培训集中从未注释的对象(“事物”)。 OPS的主要挑战是双重的:(1)\未知物体出现的无限可能性使得很难从有限数量的培训数据中对其进行建模。 (2)在培训时,我们仅提供“空白”类别,该类别实质上将“未知事物”和“背景”类混合在一起。我们从经验上发现,直接使用“ void”类别监督\已知类别或“背景”而不筛选的“背景”不会导致满足的OPS结果。在本文中,我们提出了一个分裂和争议计划,以制定OPS的两阶段决策过程。我们表明,通过将\已知的类别歧视器与其他类别的对象预测头正确相结合,可以显着提高OPS性能。具体而言,我们首先建议创建一个仅具有\已知类别的分类器,并让“ void”类建议从这些类别中实现较低的预测概率。然后,我们使用其他对象预测头将“未知事物”与背景区分开。为了进一步提高性能,我们介绍了从最新模型产生的“未知事物”伪标签,以及丰富训练集的启发式规则。我们广泛的实验评估表明,我们的方法显着提高了\未知的类圆形质量,比现有最佳表现最佳方法的相对改进超过30 \%。
translated by 谷歌翻译
自然语言处理(NLP)通过分析社交媒体或新闻媒体的文本来证明支持财务决策的巨大潜力。在这项工作中,我们建立了一个平台,可以系统地研究NLP股票自动交易算法。与以前的工作相反,我们的平台具有三个功能:(1)我们为每个特定股票提供财务新闻。 (2)我们为每种股票提供各种股票因素。 (3)我们评估了更多与财务相关的指标的绩效。这样的设计使我们能够在更现实的环境中开发和评估NLP库存自动交易算法。除了设计评估平台和数据集集合外,我们还通过提出一个系统来自动从各种输入信息中学习良好的功能表示形式来做出技术贡献。我们算法的关键是一种称为语义角色标签池(SRLP)的方法,该方法利用语义角色标签(SRL)来创建每个新闻段的紧凑表示。基于SRLP,我们进一步纳入了其他股票因素以进行最终预测。此外,我们提出了一种基于SRLP的自我监督的学习策略,以增强系统的分布概括性能。通过我们的实验研究,我们表明所提出的方法可以实现更好的性能,并胜过所有基本线的年度回报率,以及CSI300指数和XIN9指数的最大减收率。我们的ASTOCK数据集和代码可在https://github.com/jinanzou/astock上找到。
translated by 谷歌翻译