Lack of factual correctness is an issue that still plagues state-of-the-art summarization systems despite their impressive progress on generating seemingly fluent summaries. In this paper, we show that factual inconsistency can be caused by irrelevant parts of the input text, which act as confounders. To that end, we leverage information-theoretic measures of causal effects to quantify the amount of confounding and precisely quantify how they affect the summarization performance. Based on insights derived from our theoretical results, we design a simple multi-task model to control such confounding by leveraging human-annotated relevant sentences when available. Crucially, we give a principled characterization of data distributions where such confounding can be large thereby necessitating the use of human annotated relevant sentences to generate factual summaries. Our approach improves faithfulness scores by 20\% over strong baselines on AnswerSumm \citep{fabbri2021answersumm}, a conversation summarization dataset where lack of faithfulness is a significant issue due to the subjective nature of the task. Our best method achieves the highest faithfulness score while also achieving state-of-the-art results on standard metrics like ROUGE and METEOR. We corroborate these improvements through human evaluation.
translated by 谷歌翻译
Image token removal is an efficient augmentation strategy for reducing the cost of computing image features. However, this efficient augmentation strategy has been found to adversely affect the accuracy of CLIP-based training. We hypothesize that removing a large portion of image tokens may improperly discard the semantic content associated with a given text description, thus constituting an incorrect pairing target in CLIP training. To address this issue, we propose an attentive token removal approach for CLIP training, which retains tokens with a high semantic correlation to the text description. The correlation scores are computed in an online fashion using the EMA version of the visual encoder. Our experiments show that the proposed attentive masking approach performs better than the previous method of random token removal for CLIP training. The approach also makes it efficient to apply multiple augmentation views to the image, as well as introducing instance contrastive learning tasks between these views into the CLIP framework. Compared to other CLIP improvements that combine different pre-training targets such as SLIP and MaskCLIP, our method is not only more effective, but also much more efficient. Specifically, using ViT-B and YFCC-15M dataset, our approach achieves $43.9\%$ top-1 accuracy on ImageNet-1K zero-shot classification, as well as $62.7/42.1$ and $38.0/23.2$ I2T/T2I retrieval accuracy on Flickr30K and MS COCO, which are $+1.1\%$, $+5.5/+0.9$, and $+4.4/+1.3$ higher than the SLIP method, while being $2.30\times$ faster. An efficient version of our approach running $1.16\times$ faster than the plain CLIP model achieves significant gains of $+5.3\%$, $+11.3/+8.0$, and $+9.5/+4.9$ on these benchmarks.
translated by 谷歌翻译
Most recent head pose estimation (HPE) methods are dominated by the Euler angle representation. To avoid its inherent ambiguity problem of rotation labels, alternative quaternion-based and vector-based representations are introduced. However, they both are not visually intuitive, and often derived from equivocal Euler angle labels. In this paper, we present a novel single-stage keypoint-based method via an {\it intuitive} and {\it unconstrained} 2D cube representation for joint head detection and pose estimation. The 2D cube is an orthogonal projection of the 3D regular hexahedron label roughly surrounding one head, and itself contains the head location. It can reflect the head orientation straightforwardly and unambiguously in any rotation angle. Unlike the general 6-DoF object pose estimation, our 2D cube ignores the 3-DoF of head size but retains the 3-DoF of head pose. Based on the prior of equal side length, we can effortlessly obtain the closed-form solution of Euler angles from predicted 2D head cube instead of applying the error-prone PnP algorithm. In experiments, our proposed method achieves comparable results with other representative methods on the public AFLW2000 and BIWI datasets. Besides, a novel test on the CMU panoptic dataset shows that our method can be seamlessly adapted to the unconstrained full-view HPE task without modification.
translated by 谷歌翻译
While Named Entity Recognition (NER) is a widely studied task, making inferences of entities with only a few labeled data has been challenging, especially for entities with nested structures. Unlike flat entities, entities and their nested entities are more likely to have similar semantic feature representations, drastically increasing difficulties in classifying different entity categories in the few-shot setting. Although prior work has briefly discussed nested structures in the context of few-shot learning, to our best knowledge, this paper is the first one specifically dedicated to studying the few-shot nested NER task. Leveraging contextual dependency to distinguish nested entities, we propose a Biaffine-based Contrastive Learning (BCL) framework. We first design a Biaffine span representation module for learning the contextual span dependency representation for each entity span rather than only learning its semantic representation. We then merge these two representations by the residual connection to distinguish nested entities. Finally, we build a contrastive learning framework to adjust the representation distribution for larger margin boundaries and more generalized domain transfer learning ability. We conducted experimental studies on three English, German, and Russian nested NER datasets. The results show that the BCL outperformed three baseline models on the 1-shot and 5-shot tasks in terms of F1 score.
translated by 谷歌翻译
Each student matters, but it is hardly for instructors to observe all the students during the courses and provide helps to the needed ones immediately. In this paper, we present StuArt, a novel automatic system designed for the individualized classroom observation, which empowers instructors to concern the learning status of each student. StuArt can recognize five representative student behaviors (hand-raising, standing, sleeping, yawning, and smiling) that are highly related to the engagement and track their variation trends during the course. To protect the privacy of students, all the variation trends are indexed by the seat numbers without any personal identification information. Furthermore, StuArt adopts various user-friendly visualization designs to help instructors quickly understand the individual and whole learning status. Experimental results on real classroom videos have demonstrated the superiority and robustness of the embedded algorithms. We expect our system promoting the development of large-scale individualized guidance of students.
translated by 谷歌翻译
开放域对话系统旨在以开放式的方式通过自然语言文本与人类互动。但是,广泛成功的神经网络可能对对话系统无法正常工作,因为它们倾向于产生通用响应。在这项工作中,我们提出了一个相等大小的艰难期望 - 最大化(EQHARD-EM)算法来训练多样化对话生成的多次模型。我们的算法以艰苦的方式将样品分配给解码器,并强加了等同的约束,以确保所有解码器都经过良好的训练。我们提供详细的理论分析以证明我们的方法是合理的。此外,对两个大规模开放域对话数据集进行了实验,验证了我们的eqhard-em算法是否会产生高质量的不同响应。
translated by 谷歌翻译
作为估计高维网络的工具,图形模型通常应用于钙成像数据以估计功能性神经元连接,即神经元活动之间的关系。但是,在许多钙成像数据集中,没有同时记录整个神经元的人群,而是部分重叠的块。如(Vinci等人2019年)最初引入的,这导致了图形缝问题,在该问题中,目的是在仅观察到功能的子集时推断完整图的结构。在本文中,我们研究了一种新颖的两步方法来绘制缝的方法,该方法首先使用低级协方差完成技术在估计图结构之前使用低级协方差完成技术划分完整的协方差矩阵。我们介绍了三种解决此问题的方法:阻止奇异价值分解,核标准惩罚和非凸低级别分解。尽管先前的工作已经研究了低级别矩阵的完成,但我们解决了阻碍遗失的挑战,并且是第一个在图形学习背景下研究问题的挑战。我们讨论了两步过程的理论特性,通过证明新颖的l无限 - 基 - 误差界的矩阵完成,以块错失性证明了一种提出的方​​法的图选择一致性。然后,我们研究了所提出的方法在模拟和现实世界数据示例上的经验性能,通过该方法,我们显示了这些方法从钙成像数据中估算功能连通性的功效。
translated by 谷歌翻译
由于深度神经网络的开发,尤其是对于最近开发的无监督的JND代模型,对公正的显着差异(JND)建模做出了重大改进。但是,他们有一个主要的缺点,即在现实世界信号域而不是在人脑中的感知结构域中评估了生成的JND。当在这两个域中评估JND时,存在明显的差异,因为在现实世界中的视觉信号在通过人类视觉系统(HVS)传递到大脑之前已编码。因此,我们提出了一个受HVS启发的信号降解网络进行JND估计。为了实现这一目标,我们仔细分析了JND主观观察中的HVS感知过程,以获得相关的见解,然后设计受HVS启发的信号降解(HVS-SD)网络,以表示HVS中的信号降解。一方面,知识渊博的HVS-SD使我们能够评估感知域中的JND。另一方面,它提供了更准确的先验信息,以更好地指导JND生成。此外,考虑到合理的JND不应导致视觉注意力转移的要求,提出了视觉注意力丧失以控制JND的生成。实验结果表明,所提出的方法实现了SOTA性能,以准确估计HVS的冗余性。源代码将在https://github.com/jianjin008/hvs-sd-jnd上找到。
translated by 谷歌翻译
本文提出了一种新的方法,可以通过蒙特卡洛树搜索来控制象征性音乐的情感。我们使用蒙特卡洛树搜索作为一种解码机制来指导语言模型学到的概率分布朝着给定的情感。在解码过程的每个步骤中,我们都会使用树木(Puct)的预测指标上的置信度来搜索分别由情绪分类器和歧视器给出的情感和质量平均值的序列。我们将语言模型用作管道的政策,并将情感分类器和歧视器的组合作为其价值功能。为了解码一段音乐中的下一个令牌,我们从搜索过程中创建的节点访问的分布中进行采样。我们使用直接从生成的样品计算的一组客观指标来评估生成样品相对于人类组成的碎片的质量。我们还进行了一项用户研究,以评估人类受试者如何看待生成的样品的质量和情感。我们将派斗与随机双目标梁搜索(SBB)和条件采样(CS)进行了比较。结果表明,在音乐质量和情感的几乎所有指标中,Puct的表现都优于SBB和CS。
translated by 谷歌翻译
图像垫是指从自然图像中预测未知前景区域的α值。先前的方法集中在传播已知区域到未知区域的α值。但是,并非所有自然图像都有特别已知的前景。透明物体(例如玻璃,烟雾,网络等)的图像具有较少或没有已知的前景图像。在本文中,我们提出了一个基于变压器的网络传输,以模拟具有大型接收场的透明对象。具体而言,我们将三个可学习的三动物重新设计为将先进的语义特征引入自我发项机制。提出了一个小型的卷积网络,以利用全局功能和非背景掩码来指导从编码器到解码器的多尺度特征传播,以维护透明对象的上下文。此外,我们创建了具有小型已知前景区域的透明物体的高分辨率垫子数据集。在几个基准基准上进行的实验证明了我们提出的方法比当前最新方法的优越性。
translated by 谷歌翻译