近年来,由渠道状态信息(CSI)启用了基于WiFi的智能人类传感技术(CSI)。但是,在不同的环境中部署时,基于CSI的传感系统会遭受性能降解。现有作品通过使用新环境中的大量未标记的高质量数据来通过域的适应来解决这一问题,这在实践中通常不可用。在本文中,我们提出了一种新颖的增强环境不变的鲁棒wifi wifi识别系统,名为Airfi,该系统从新的角度涉及环境依赖问题。 Airfi是一个新颖的领域泛化框架,无论环境如何,都可以学习CSI的关键部分,并将模型推广到看不见的场景,不需要收集任何数据以适应新环境。 Airfi从几个培训环境环境中提取了共同的功能,并最大程度地减少了它们之间的分布差异。该功能将进一步增强,以使环境更强大。此外,可以通过几次学习技术进一步改进该系统。与最先进的方法相比,Airfi能够在不同的环境环境中工作,而无需从新环境中获取任何CSI数据。实验结果表明,我们的系统在新环境中保持强大,并优于比较系统。
translated by 谷歌翻译
作为人类识别的重要生物标志物,可以通过被动传感器在没有主题合作的情况下以远距离收集人步态,这在预防犯罪,安全检测和其他人类识别应用中起着至关重要的作用。目前,大多数研究工作都是基于相机和计算机视觉技术来执行步态识别的。但是,在面对不良的照明时,基于视觉的方法并不可靠,导致性能降解。在本文中,我们提出了一种新型的多模式步态识别方法,即gaitfi,该方法利用WiFi信号和视频进行人类识别。在GAITFI中,收集了反映WiFi多路径传播的通道状态信息(CSI),以捕获人体步态,而视频则由相机捕获。为了了解强大的步态信息,我们建议使用轻量级残留卷积网络(LRCN)作为骨干网络,并通过集成WiFi和Vision功能来进一步提出两流性gaitfi,以进行步态检索任务。通过在不同级别的特征上的三胞胎损失和分类损失进行训练。广泛的实验是在现实世界中进行的,该实验表明,基于单个WiFi或摄像机的GAITFI优于最先进的步态识别方法,对于12个受试者的人类识别任务而达到94.2%。
translated by 谷歌翻译
阿凡达(Avatar)是指虚拟世界中物理用户的代表,该代表可以从事不同的活动并与Metaverse中的其他对象进行交互。模拟化身需要准确的人类姿势估计。尽管基于摄像头的解决方案产生了出色的性能,但它们遇到了隐私问题,并因不同的照明而引起的性能退化,尤其是在智能家居中。在本文中,我们提出了一种基于WiFi的IOT基于Metavers Avatar模拟的人类姿势估计方案,即Metafi。具体而言,深度神经网络设计具有定制的卷积层和残留块,以将渠道状态信息映射到人体姿势地标。它被强制从准确的计算机视觉模型中学习注释,从而实现跨模式监督。 WiFi无处不在且强大的照明,使其成为智能家居中的头像应用的可行解决方案。实验是在现实世界中进行的,结果表明,METAFI以95.23%的50@PCK实现了很高的性能。
translated by 谷歌翻译
为了使视频模型能够在不同环境中无缝应用,已经提出了各种视频无监督的域适应性(VUDA)方法来提高视频模型的鲁棒性和可传递性。尽管模型鲁棒性有所改进,但这些VUDA方法仍需要访问源数据和源模型参数以进行适应,从而提高了严重的数据隐私和模型可移植性问题。为了应对上述问题,本文首先将Black-Box视频域的适应(BVDA)制定为更现实但具有挑战性的场景,在该场景中,仅作为Black-Box预测器提供了源视频模型。尽管在图像域中提出了一些针对黑框域适应性(BDA)的方法,但这些方法不能适用于视频域,因为视频模式具有更复杂的时间特征,难以对齐。为了解决BVDA,我们通过应用蒙版到混合策略和视频量的正则化:内部正规化和外部正规化,提出了一个新颖的内野和外部正规化网络(EXTERS),在剪辑和时间特征上执行,并进行外部正规化,同时将知识从从黑框预测变量获得的预测中提炼出来。经验结果表明,在各种跨域封闭设置和部分集合动作识别基准中,外部的最先进性能甚至超过了具有源数据可访问性的大多数现有视频域适应方法。
translated by 谷歌翻译
近年来,WiFi传感一直在迅速发展。通过传播模型和深度学习方法的能力,实现了许多具有挑战性的应用,例如基于WiFi的人类活动识别和手势识别。但是,与深入学习视觉识别和自然语言处理相反,没有足够全面的公共基准。在本文中,我们强调了最新的深度学习进展,使WiFi传感能够感测,然后提出了一个基准SensenFI,以研究各种深度学习模型对WiFi传感的有效性。这些高级模型是根据独特的传感任务,WiFi平台,识别精度,模型大小,计算复杂性,功能可传递性以及无监督学习的适应性进行比较的。从CSI硬件平台到传感算法,它也被认为是基于深度学习的WiFi传感的教程。广泛的实验为我们提供了深层模型设计,学习策略技能和培训技术的经验。据我们所知,这是第一个带开源库的基准,用于WiFi传感研究中的深度学习。基准代码可在https://github.com/chenxinyan-sg/wifi-csi-sensing-benchmark上获得。
translated by 谷歌翻译
由于高速互联网访问的要求增加,WiFi技术已应用于各个地方。最近,除了网络服务之外,WiFi Sensing在智能家居中还具有吸引力,因为它是无设备,具有成本效益和隐私性的。尽管已经开发了许多WiFi传感方法,但其中大多数仅考虑单个智能家庭场景。没有强大的云服务器和大量用户的连接,大规模的WiFi感应仍然很困难。在本文中,我们首先分析和总结了这些障碍,并提出了一个有效的大规模WiFi传感框架,即有效的障碍。 EfficityFI与中心服务器处的WiFi APS和云计算一起使用Edge Computing。它由一个新颖的深神经网络组成,该网络可以在Edge处压缩细粒的WiFi通道状态信息(CSI),在云中恢复CSI,并同时执行感应任务。量化的自动编码器和联合分类器旨在以端到端的方式实现这些目标。据我们所知,EfficityFi是第一个启用IoT-Cloud WiFi传感框架,可大大减少开销的交流,同时准确地实现感应任务。我们通过WiFi传感利用人类活动识别和鉴定为两个案例研究,并进行了广泛的实验以评估有效性。结果表明,它将CSI数据从1.368MB/s压缩至0.768kb/s,数据重建的误差极低,并且可以达到超过98%的人类活动识别精度。
translated by 谷歌翻译
在这项工作中,研究了使用板载探测仪和机器人间距离测量值的4个自由度(3D位置和标题)机器人对机器人相对框架转换估计的问题。首先,我们对问题进行了理论分析,即CRAMER-RAO下限(CRLB),Fisher Information Matrix(FIM)及其决定因素的推导和解释。其次,我们提出了基于优化的方法来解决该问题,包括二次约束二次编程(QCQP)和相应的半决赛编程(SDP)放松。此外,我们解决了以前的工作中忽略的实际问题,例如对超宽带(UWB)和轨道仪传感器之间的空间偏移的核算,拒绝UWB异常值并在开始操作之前检查单数配置。最后,对空中机器人进行的广泛的模拟和现实生活实验表明,所提出的QCQP和SDP方法的表现优于最先进的方法,尤其是在几何差或大的测量噪声条件下。通常,QCQP方法以计算时间为代价提供了最佳结果,而SDP方法运行得更快,并且在大多数情况下非常准确。
translated by 谷歌翻译
非平滑的有限和最小化是机器学习中的一个基本问题。本文开发了一种具有随机重新洗牌的分布式随机近端梯度算法,以解决随着时变多代理网络的有限和最小化。目标函数是可分辨率凸起功能的总和和非平滑的正则化。网络中的每个代理通过本地信息更新具有恒定步长大小的局部变量,并协作以寻求最佳解决方案。我们证明了所提出的算法产生的局部变量估计实现共识,并且与$ \ mathcal {o}(\ frac {1} {t} + \ frac {1} {\SQRT {T}})$收敛率。此外,本文通过选择足够的阶梯尺寸,可以任意地小的目标函数的稳态误差。最后,提供了一些比较仿真来验证所提出的算法的收敛性能。
translated by 谷歌翻译
尽管数十年来,同时定位和映射(SLAM)一直是一个积极的研究主题,但由于特征不足或其固有的估计漂移,在许多平民环境中,当前的最新方法仍然遭受不稳定或不准确性的困扰。为了解决这些问题,我们提出了一个梳理SLAM和先前基于图的本地化的导航系统。具体而言,我们考虑了线条和平面特征的其他集成,这些特征在平民环境中无处不在,在结构上更突出,以确保功能充足和本地化的鲁棒性。更重要的是,我们将一般的先验地图信息纳入SLAM以限制其漂移并提高准确性。为了避免在先前的信息和局部观察之间进行严格的关联,我们将先验知识的参数化为低维结构先验,定义为不同几何原始原始人之间的相对距离/角度。本地化被公式化为基于图的优化问题,其中包含基于滑动窗口的变量和因素,包括IMU,异质特征和结构先验。我们还得出了不同因素的雅各布人的分析表达式,以避免自动分化开销。为了进一步减轻结合结构先验因素的计算负担,根据所谓的信息增益采用了选择机制,以仅将最有效的结构先验纳入图表优化中。最后,对综合数据,公共数据集以及更重要的是,对所提出的框架进行了广泛的测试。结果表明,所提出的方案可以有效地提高平民应用中自动驾驶机器人的本地化的准确性和鲁棒性。
translated by 谷歌翻译
尽管模拟语义通信系统在文献中受到了很大的关注,但在数字语义通信系统上的工作较少。在本文中,我们开发了一个深度学习(DL)启用的矢量量化(VQ)语义通信系统,用于图像传输,名为VQ-Deepsc。具体而言,我们提出了一个基于卷积的神经网络(CNN)的收发器来提取图像的多尺度语义特征,并引入多尺度语义嵌入空间以执行语义特征量化,从而使数据与数字通信系统兼容。此外,我们通过引入Patchgan歧视者来采用对抗训练来提高接收图像的质量。实验结果表明,根据SSIM,所提出的VQ-Deepsc优于传统图像传输方法。
translated by 谷歌翻译