Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
translated by 谷歌翻译
Machine Translation Quality Estimation (QE) is the task of evaluating translation output in the absence of human-written references. Due to the scarcity of human-labeled QE data, previous works attempted to utilize the abundant unlabeled parallel corpora to produce additional training data with pseudo labels. In this paper, we demonstrate a significant gap between parallel data and real QE data: for QE data, it is strictly guaranteed that the source side is original texts and the target side is translated (namely translationese). However, for parallel data, it is indiscriminate and the translationese may occur on either source or target side. We compare the impact of parallel data with different translation directions in QE data augmentation, and find that using the source-original part of parallel corpus consistently outperforms its target-original counterpart. Moreover, since the WMT corpus lacks direction information for each parallel sentence, we train a classifier to distinguish source- and target-original bitext, and carry out an analysis of their difference in both style and domain. Together, these findings suggest using source-original parallel data for QE data augmentation, which brings a relative improvement of up to 4.0% and 6.4% compared to undifferentiated data on sentence- and word-level QE tasks respectively.
translated by 谷歌翻译
We introduce OPEND, a benchmark for learning how to use a hand to open cabinet doors or drawers in a photo-realistic and physics-reliable simulation environment driven by language instruction. To solve the task, we propose a multi-step planner composed of a deep neural network and rule-base controllers. The network is utilized to capture spatial relationships from images and understand semantic meaning from language instructions. Controllers efficiently execute the plan based on the spatial and semantic understanding. We evaluate our system by measuring its zero-shot performance in test data set. Experimental results demonstrate the effectiveness of decision planning by our multi-step planner for different hands, while suggesting that there is significant room for developing better models to address the challenge brought by language understanding, spatial reasoning, and long-term manipulation. We will release OPEND and host challenges to promote future research in this area.
translated by 谷歌翻译
数学推理是人类智力的核心能力,在抽象思维和逻辑推理中对机器提出了独特的挑战。最近的大型预训练的语言模型(例如GPT-3)在以文本形式(例如数学单词问题(MWP))编写的数学推理任务上取得了显着的进步。但是,未知模型是否可以处理更复杂的问题,这些问题涉及数学推理,例如表格数据。为了填补空白,我们提出了表格数学单词问题(TABMWP),这是一个包含38,431个开放域级等级问题的新数据集,这些问题需要在文本和表格数据上进行数学推理。 TABMWP中的每个问题都与表格上下文对齐,该上下文作为图像,半结构化文本和结构化表。有两种类型的问题:自由文本和多选择,每个问题都用金解决方案注释以揭示多步推理过程。我们在TABMWP上评估了不同的预训练模型,包括在几次设置中的GPT-3模型。正如先前的研究所表明的那样,由于很少有GPT-3依赖于内在的示例的选择,因此其性能是不稳定的,并且可能会降解为几乎机会。处理TABMWP等复杂问题时,不稳定的问题更为严重。为了减轻这种情况,我们进一步提出了一种新颖的方法,即PresspG,该方法利用策略梯度学习从少量培训数据中选择中文示例,然后为测试示例构造相应的提示。实验结果表明,与随机选择相比,我们的方法在准确性度量上优于最佳基线,并显着降低了预测方差,这验证了其在选择性上下文示例中的有效性。
translated by 谷歌翻译
在回答问题时,人类会利用跨不同模式可用的信息来综合一致,完整的思想链(COT)。在深度学习模型(例如大规模语言模型)的情况下,这个过程通常是黑匣子。最近,科学问题基准已用于诊断AI系统的多跳推理能力和解释性。但是,现有数据集无法为答案提供注释,或仅限于仅文本模式,小尺度和有限的域多样性。为此,我们介绍了科学问题答案(SQA),这是一个新的基准,由〜21k的多模式多种选择问题组成,其中包含各种科学主题和答案的注释,并提供相应的讲座和解释。我们进一步设计语言模型,以学习将讲座和解释作为思想链(COT),以模仿回答SQA问题时的多跳上推理过程。 SQA在语言模型中展示了COT的实用性,因为COT将问题的答案绩效提高了1.20%的GPT-3和3.99%的unifiedqa。我们还探索了模型的上限,以通过喂食输入中的那些来利用解释;我们观察到它将GPT-3的少量性能提高了18.96%。我们的分析进一步表明,与人类类似的语言模型受益于解释,从较少的数据中学习并仅使用40%的数据实现相同的性能。
translated by 谷歌翻译
我们描述了JD Explore Academy对WMT 2022共享的一般翻译任务的提交。我们参加了所有高资源曲目和一条中型曲目,包括中文英语,德语英语,捷克语英语,俄语 - 英语和日语英语。我们通过扩大两个主要因素,即语言对和模型大小,即\ textbf {vega-mt}系统来推动以前的工作的极限 - 进行翻译的双向培训。至于语言对,我们将“双向”扩展到“多向”设置,涵盖所有参与语言,以利用跨语言的常识,并将其转移到下游双语任务中。至于型号尺寸,我们将变压器限制到拥有近47亿参数的极大模型,以完全增强我们VEGA-MT的模型容量。此外,我们采用数据增强策略,例如单语数据的循环翻译以及双语和单语数据的双向自我训练,以全面利用双语和单语言数据。为了使我们的Vega-MT适应通用域测试集,设计了概括调整。根据受约束系统的官方自动分数,根据图1所示的sacrebleu,我们在{zh-en(33.5),en-zh(49.7)(49.7),de-en(33.7)上获得了第一名-de(37.8),CS-EN(54.9),En-CS(41.4)和En-Ru(32.7)},在{ru-en(45.1)和Ja-en(25.6)}和第三名上的第二名和第三名在{en-ja(41.5)}上; W.R.T彗星,我们在{zh-en(45.1),en-zh(61.7),de-en(58.0),en-de(63.2),cs-en(74.7),ru-en(ru-en(ru-en)上,我们获得了第一名64.9),en-ru(69.6)和en-ja(65.1)},分别在{en-cs(95.3)和ja-en(40.6)}上的第二名。将发布模型,以通过GitHub和Omniforce平台来促进MT社区。
translated by 谷歌翻译
随着越来越多的大规模数据集可用于培训,近年来,视觉跟踪取得了长足的进步。但是,该领域的当前研究主要集中在跟踪通用对象上。在本文中,我们介绍了tsfmo,这是\ textbf {t} racking \ textbf {s} mall和\ textbf {f} ast \ textbf {m} oving \ textbf {o textbf {o} bignts的基准。该基准旨在鼓励研究为这项具有挑战性的任务开发新颖和准确的方法。 TSFMO由250个序列组成,总共约有50k帧。这些序列中的每个帧都用边界框仔细和手动注释。据我们所知,TSFMO是第一个致力于跟踪小型和快速移动物体的基准,尤其是与运动相关的对象。为了了解现有方法的性能并为TSFMO的未来研究提供比较,我们广泛评估了基准上的20个最先进的跟踪器。评估结果表明,需要更多的精力来改善跟踪小型和快速移动的物体。此外,为了鼓励未来的研究,我们提出了一种新颖的跟踪器S-keptrack,它超过了所有20种评估的方法。通过释放TSFMO,我们希望促进未来的研究和应用小型和快速移动对象的应用。 \ url {https://github.com/codeofgithub/s-keeptrack}可用TSFMO和评估结果以及S-KeepTrack。
translated by 谷歌翻译
最近,未经训练的神经网络(UNNS)显示了在随机采样轨迹上对MR图像重建的令人满意的性能,而无需使用其他全面采样训练数据。但是,现有的基于UNN的方法并未完全使用MR图像物理先验,导致某些常见情况(例如部分傅立叶,常规采样等)的性能差,并且缺乏重建准确性的理论保证。为了弥合这一差距,我们使用特殊设计的UNN提出了一种保障的K空间插值方法,该方法使用特殊设计的UNN,该方法由MR图像的三个物理先验(或K空间数据)驱动,包括稀疏,线圈灵敏度平稳性和相位平滑度。我们还证明,所提出的方法保证了插值K空间数据准确性的紧密界限。最后,消融实验表明,所提出的方法比现有传统方法更准确地表征了MR图像的物理先验。此外,在一系列常用的采样轨迹下,实验还表明,所提出的方法始终优于传统的平行成像方法和现有的UNN,甚至超过了最先进的监督训练的K空间深度学习方法案例。
translated by 谷歌翻译
磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小型挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来解决BTS在不同技术方面的困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模态诊断脑肿瘤的临床知识,并提出了一种称为CKD-TRANSBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。具有拟议模态相关的跨意义块(MCCA)的双支支混合式编码器旨在提取多模式图像特征。所提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的间隙,我们提出了解码器中的反式和CNN功能校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于Transformer的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,所提出的模型可实现最先进的脑肿瘤分割性能。
translated by 谷歌翻译
超声检查是乳腺癌诊断的重要常规检查,这是由于其无创,无辐射和低成本的特性。但是,由于其固有的局限性,乳腺癌的诊断准确性仍然受到限制。如果我们可以通过乳房超声图像(BUS)精确诊断乳腺癌,那将是一个巨大的成功。已经提出了许多基于学习的计算机辅助诊断方法来实现乳腺癌诊断/病变分类。但是,其中大多数需要预定的ROI,然后对ROI内的病变进行分类。常规的分类骨架,例如VGG16和RESNET50,可以在没有ROI要求的情况下获得有希望的分类结果。但是这些模型缺乏解释性,因此限制了它们在临床实践中的使用。在这项研究中,我们提出了一种具有可解释特征表示的超声图像中乳腺癌诊断的新型无ROI模型。我们利用解剖学的先验知识,即恶性肿瘤和良性肿瘤在不同的组织层之间具有不同的空间关系,并提出了悬停转换器来提出这种先验知识。提出的悬停式跨界块水平和垂直地提取层间和层内空间信息。我们进行并释放一个开放的数据集GDPH&SYSUCC,以用于公共汽车中的乳腺癌诊断。通过与四个基于CNN的模型和两个Vision Transformer模型进行比较,通过五倍的交叉验证来评估所提出的模型。它通过最佳模型可解释性实现最新的分类性能。同时,我们提出的模型在仅给出一张公交图像时,在乳腺癌诊断方面优于两名高级超声检查员。
translated by 谷歌翻译