尽管最近在半监督联合学习(FL)进行医学图像诊断方面取得了进展,但未确定未标记的客户之间的类别分布不平衡的问题仍未解决。在本文中,我们研究了类不平衡的半监督FL(IMFED-SEMI)的实用但具有挑战性的问题,该问题使所有客户端仅具有未标记的数据,而服务器只有少量标记的数据。新型动态银行学习计划解决了这个IMFED-SEMI问题,该计划通过利用班级比例信息来改善客户培训。该方案由两个部分组成,即,为每个本地客户端提取各种类比例的动态银行构建,以及分类分类,以强加本地模型以学习不同的类比例。我们评估了两个公共现实世界中医学数据集的方法,包括25,000 CT切片的颅内出血诊断和10,015个皮肤镜图像的皮肤病变诊断。与第二好的精度以及全面的分析研究相比,我们的方法的有效性已得到了显着改善(7.61%和4.69%)的验证(7.61%和4.69%)。代码可在https://github.com/med-air/imfedsemi上找到。
translated by 谷歌翻译