Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
Traditional approaches to RL have focused on learning decision policies directly from episodic decisions, while slowly and implicitly learning the semantics of compositional representations needed for generalization. While some approaches have been adopted to refine representations via auxiliary self-supervised losses while simultaneously learning decision policies, learning compositional representations from hand-designed and context-independent self-supervised losses (multi-view) still adapts relatively slowly to the real world, which contains many non-IID subspaces requiring rapid distribution shift in both time and spatial attention patterns at varying levels of abstraction. In contrast, supervised language model cascades have shown the flexibility to adapt to many diverse manifolds, and hints of self-learning needed for autonomous task transfer. However, to date, transfer methods for language models like few-shot learning and fine-tuning still require human supervision and transfer learning using self-learning methods has been underexplored. We propose a self-supervised loss policy called contrastive distillation which manifests latent variables with high mutual information with both source and target tasks from weights to tokens. We show how this outperforms common methods of transfer learning and suggests a useful design axis of trading off compute for generalizability for online transfer. Contrastive distillation is improved through sampling from memory and suggests a simple algorithm for more efficiently sampling negative examples for contrastive losses than random sampling.
translated by 谷歌翻译
Standard language model training employs gold human documents or human-human interaction data, and treats all training data as positive examples. Growing evidence shows that even with very large amounts of positive training data, issues remain that can be alleviated with relatively small amounts of negative data -- examples of what the model should not do. In this work, we propose a novel procedure to train with such data called the CRINGE loss (ContRastive Iterative Negative GEneration). We show the effectiveness of this approach across three different experiments on the tasks of safe generation, contradiction avoidance, and open-domain dialogue. Our models outperform multiple strong baselines and are conceptually simple, easy to train and implement.
translated by 谷歌翻译
我们提出了Blenderbot 3,这是一个175B参数对话模型,能够通过访问Internet和长期内存进行开放域对话,并接受了大量用户定义的任务的培训。我们同时发布了模型权重和代码,还将模型部署在公共网页上,以与有机用户进行交互。该技术报告描述了该模型的构建方式(建筑,模型和培训计划)以及其部署的细节,包括安全机制。人类评估表明,它优于现有的开放域对话代理,包括其前身(Roller等,2021; Komeili等,2022)。最后,我们使用部署收集的数据详细介绍了持续学习的计划,该数据也将公开发布。因此,该研究计划的目标是使社区能够研究通过互动学习的不断改进的负责任的代理商。
translated by 谷歌翻译
当前的语言模型达到了较低的困惑,但其产生的几代人仍然遭受有毒的反应,重复性和矛盾。标准语言建模设置无法解决这些问题。在本文中,我们介绍了一个新的体系结构{\ sc导演},由一个统一的生成器分类器组成,具有语言建模和每个输出令牌的分类头。培训是使用标准语言建模数据共同进行的,并以所需和不良序列标记的数据。与标准语言模型相比,该模型在多种设置中的实验表明,该模型具有竞争性的培训和解码速度,同时产生了较高的结果,从而减轻了已知的问题,同时保持发电质量。就准确性和效率而言,它还优于现有的模型指导方法。
translated by 谷歌翻译
大型语言模型经常经过数十万个计算天的训练,已经显示出零和少数学习的显着功能。鉴于它们的计算成本,如果没有大量资本,这些模型很难复制。对于通过API可用的少数产品,没有访问完整的模型权重,因此很难学习。我们提供开放训练的预训练变压器(OPT),这是一套仅解码器预训练的变压器,范围从12500万到175b参数,我们旨在与感兴趣的研究人员完全和负责任地分享。我们表明,OPT-175B与GPT-3相当,而仅需要1/7碳足迹才能开发。我们还释放了日志,详细介绍了我们面临的基础架构挑战,以及用于尝试所有发布模型的代码。
translated by 谷歌翻译
最先进的对话模型仍然对事实准确性和自我矛盾甚至困难。轶事,他们已被观察到在整个话语中未能维持性质身份;更具体地,可能会涉及其对话者的作用。在这项工作中,我们正规化和量化这种缺陷,并通过人类评估实验表明这确实是一个问题。相比之下,我们展示了专门识别谁在谈话的歧视模型可以表现良好;此外,这些可以用作自动指标。最后,我们评估了各种缓解方法,包括模型架构,培训协议和解码策略的变化。根据人类的注释者,我们最好的车型减少了近65%的误认为是近65%,同时提高了参与度。尽管有这些结果,但我们发现维持性格身份仍然是一个具有挑战性的问题。
translated by 谷歌翻译
大型语言模型可以产生流畅的对话,但往往是幻觉的事实不准确。虽然检索式增强的模型有助于缓解这个问题,但他们仍然面临着推理的艰难挑战,以便同时提供正确的知识和产生对话。在这项工作中,我们提出了一种模块化模型,知识响应(K2R),将知识纳入会话代理商,这将这个问题分解为两个更简单的步骤。 K2R首先生成一个知识序列,给定对话背景作为中间步骤。在此“推理步骤”之后,该模型随后参加自己生成的知识序列,以及对话背景,以产生最终的响应。在详细的实验中,我们发现这种模型在知识接地的对话任务中少幻觉,并且在可解释性和模块化方面具有优势。特别地,它可以用来将QA和对话系统一起融合在一起,以使对话代理能够提供知识渊博的答案,或者QA模型,以在零拍摄设置中给出对话响应。
translated by 谷歌翻译
In open-domain dialogue intelligent agents should exhibit the use of knowledge, however there are few convincing demonstrations of this to date. The most popular sequence to sequence models typically "generate and hope" generic utterances that can be memorized in the weights of the model when mapping from input utterance(s) to output, rather than employing recalled knowledge as context. Use of knowledge has so far proved difficult, in part because of the lack of a supervised learning benchmark task which exhibits knowledgeable open dialogue with clear grounding. To that end we collect and release a large dataset with conversations directly grounded with knowledge retrieved from Wikipedia. We then design architectures capable of retrieving knowledge, reading and conditioning on it, and finally generating natural responses. Our best performing dialogue models are able to conduct knowledgeable discussions on open-domain topics as evaluated by automatic metrics and human evaluations, while our new benchmark allows for measuring further improvements in this important research direction.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译