指纹验证中的一个开放问题是对图像质量退化的鲁棒性缺乏鲁棒性。质量差的图像导致虚假且缺失的功能,从而降低整体系统的性能。因此,对于指纹识别系统非常重要,以估计捕获的指纹图像的质量和有效性。在这项工作中,我们审查了现有的指纹图像质量估算方法,包括发表措施背后的理由,以及在不同质量条件下显示其行为的视觉示例。我们还测试了一系列指纹图像质量估计算法。对于实验,我们雇用BioSec多模态基线语料库,其中包括在两个与三个不同传感器中获取的200个个人的19200个指纹图像。比较所选质量措施的行为,在大多数情况下显示它们之间的高相关性。还研究了低质量样本在验证性能中的影响,也是广泛可用的小型指纹匹配系统。
translated by 谷歌翻译
我们介绍了MGNET,这是一个多任务框架,用于单眼几何场景。我们将单眼几何场景的理解定义为两个已知任务的组合:全景分割和自我监管的单眼深度估计。全景分段不仅在语义上,而且在实例的基础上捕获完整场景。自我监督的单眼深度估计使用摄像机测量模型得出的几何约束,以便从单眼视频序列中测量深度。据我们所知,我们是第一个在一个模型中提出这两个任务的组合的人。我们的模型专注于低潜伏期,以实时在单个消费级GPU上实时提供快速推断。在部署过程中,我们的模型将产生密集的3D点云,其中具有来自单个高分辨率摄像头图像的实例意识到语义标签。我们对两个流行的自动驾驶基准(即CityScapes and Kitti)评估了模型,并在其他能够实时的方法中表现出竞争性能。源代码可从https://github.com/markusschoen/mgnet获得。
translated by 谷歌翻译
视觉世界可以以稀疏相互作用的不同实体来嘲笑。在动态视觉场景中发现这种组合结构已被证明对端到端的计算机视觉方法有挑战,除非提供明确的实例级别的监督。利用运动提示的基于老虎机的模型最近在学习代表,细分和跟踪对象的情况下没有直接监督显示了巨大的希望,但是它们仍然无法扩展到复杂的现实世界多对象视频。为了弥合这一差距,我们从人类发展中汲取灵感,并假设以深度信号形式的场景几何形状的信息可以促进以对象为中心的学习。我们介绍了一种以对象为中心的视频模型SAVI ++,该模型经过训练,可以预测基于插槽的视频表示的深度信号。通过进一步利用模型缩放的最佳实践,我们能够训练SAVI ++以细分使用移动摄像机记录的复杂动态场景,其中包含在自然主义背景上具有不同外观的静态和移动对象,而无需进行分割监督。最后,我们证明,通过使用从LIDAR获得的稀疏深度信号,Savi ++能够从真实World Waymo Open DataSet中的视频中学习新兴对象细分和跟踪。
translated by 谷歌翻译
可靠的跟踪算法对于自动驾驶至关重要。但是,现有的一致性措施不足以满足汽车部门日益增长的安全需求。因此,这项工作提出了一种基于卡尔曼过滤和主观逻辑的混乱中单对象跟踪自我评估的新方法。该方法的一个关键特征是,它还提供了在线可靠性评分中收集的统计证据的量度。这样,可靠性的各个方面,例如假定的测量噪声,检测概率和混乱速率的正确性,除了基于可用证据的整体评估外,还可以监视。在这里,我们提出了用于研究问题的自我评估模块中使用的参考分布的数学推导。此外,我们介绍了一个公式,该公式描述了如何为冲突程度选择阈值,这是用于可靠性决策的主观逻辑比较度量。我们的方法在旨在建模不利天气条件的挑战性模拟场景中进行了评估。模拟表明,我们的方法可以显着提高多个方面杂物中单对象跟踪的可靠性检查。
translated by 谷歌翻译
从物体及其在3D空间中的几何形状方面对世界的组成理解被认为是人类认知的基石。促进神经网络中这种表示形式的学习有望实质上提高标记的数据效率。作为朝着这个方向发展的关键步骤,我们在学习3D一致的复杂场景分解的问题上取得了进展,以无监督的方式将复杂场景分解为单个对象。我们介绍对象场景表示变压器(OSRT),这是一个以3D为中心的模型,其中各个对象表示通过新颖的视图合成自然出现。 OSRT比现有方法更为复杂,具有更大的对象和背景的复杂场景。同时,由于其光场参数化和新型的插槽混合器解码器,它在组成渲染时的多个数量级更快。我们认为,这项工作不仅将加速未来的建筑探索和扩展工作,而且还将成为以对象为中心和神经场景表示社区的有用工具。
translated by 谷歌翻译
大规模数据集启用了基于学习的轨迹预测的进步。但是,对此类数据集的深入分析是有限的。此外,对预测模型的评估仅限于数据集中所有样本的指标。我们提出了一种自动化方法,该方法允许从此类数据集中的代理轨迹提取操作(例如,左转,车道更改)。该方法考虑了有关代理动力学和有关代理商行驶的车道段的信息。尽管可以将最终的操纵用于训练分类网络,但我们将它们用于广泛的轨迹数据集分析和对多个最先进的轨迹预测模型的操纵特定评估。此外,还提供了基于代理动力学的数据集的分析和对预测模型的评估。
translated by 谷歌翻译
在这项工作中,我们介绍了一种基于双季度的单眼手眼校准的方法。由于单手术机制的非度量缩放转换,除了旋转和翻译校准之外,还必须估计缩放因子。为此,我们得出了一种二次约束的二次程序,允许组合估计所有外本校准参数。由于其紧凑的表示,使用双季度导致低运行时间。我们的问题配方进一步允许同时为相同传感器设置的不同序列估计多个缩放。基于我们的问题制定,我们派生了,快速的本地和全球最佳的解决方法。最后,评估了我们的算法,并与最先进的模拟和实际数据的方法进行了评估,例如,EUROC MAV数据集。
translated by 谷歌翻译
新的纳米级技术的出现对辐射环境中的可靠电子系统造成了重大挑战。少数种类的辐射等全电离剂量(TID)效应通常导致在这种纳米级电子设备上的永久性损坏,以及当前最先进的技术,以使用昂贵的辐射硬化装置。本文重点介绍了一种新颖且不同的方法:在消费者电子级现场可编程门阵列(FPGA)上使用机器学习算法来解决TID效果并在停止工作之前监控它们替换。这种情况有一个研究挑战,以期待电路板因TID效应而导致总失效。我们观察到γ辐射下FPGA板的内部测量,并使用了三种不同的异常检测机学习(ML)算法来检测伽马辐射环境中的传感器测量中的异常。统计结果表明伽马辐射曝光水平与板测量之间的高度显着关系。此外,我们的异常检测结果表明,具有径向基函数内核的单级支持向量机的平均召回得分为0.95。此外,在电路板停止工作之前,可以检测到所有异常。
translated by 谷歌翻译
在这项工作中,我们表明,可以在模拟中完全使用加强学习进行培训低级控制策略,然后,在Quadrotor机器人上部署它们而不使用真实数据进行微调。为了渲染零拍策略转移可行,我们应用模拟优化以缩小现实差距。我们的神经网络的策略仅使用车载数据,并完全在嵌入式无人机硬件上运行。在广泛的真实实验中,我们比较三种不同的控制结构,范围从低级脉冲宽度调制的电机命令到基于嵌套比例 - 积分衍生物控制器的高级姿态控制。我们的实验表明,利用加固学习培训的低级控制器需要比更高级别的控制策略更准确的模拟。
translated by 谷歌翻译
挖掘大型数据集以预测新数据时,统计机器学习背后原则的限制不仅对大数据迅速产生了严峻的挑战,而且对数据生成过程被偏置为低算法复杂性的传统假设构成了严峻的挑战。即使在有限数据集生成器中为简单呈现潜在的算法信息偏见时,我们也显示完全自动化,有或没有访问伪随机发生器,可计算学习算法,特别是当前机器学习方法中使用的统计性质的统计性质(包括深度学习),可以始终通过足够大的数据集来欺骗,自然地或人工。特别地,我们证明,对于每个有限的学习算法,存在足够大的数据集大小,上面不可预测的欺骗者的算法概率是算法的上限(最多只取决于学习算法的乘法常数)任何其他更大数据集的概率。换句话说,非常大的和复杂的数据集可能欺骗学习算法作为任何其他特定数据集的“简单泡沫”。这些欺骗数据集保证,任何预测都会从高算法复杂性全局最佳解决方案中发散,同时朝向低算法复杂度局部最佳解决方案。我们讨论框架和经验条件,以避免这种欺骗性现象,远离统计机器学习,以基于或激励的算法信息理论和可计算性理论的内在力量。
translated by 谷歌翻译