与淘宝和亚马逊等大型平台不同,由于严重的数据分配波动(DDF)问题,在小规模推荐方案中开发CVR模型是更具挑战性的。 DDF防止现有的CVR模型自生效以来,因为1)需要几个月的数据需要足够小的场景训练CVR模型,导致培训和在线服务之间的相当大的分布差异; 2)电子商务促销对小型情景产生了更大的影响,导致即将到期的时间段的不确定性。在这项工作中,我们提出了一种名为MetacVR的新型CVR方法,从Meta学习的角度解决了DDF问题。首先,由特征表示网络(FRN)和输出层组成的基础CVR模型是精心设计和培训的,在几个月内与样品充分设计和培训。然后,我们将不同数据分布的时间段视为不同的场合,并使用相应的样本和预先训练的FRN获得每个场合的正面和负原型。随后,设计了距离度量网络(DMN)以计算每个样本和所有原型之间的距离度量,以便于减轻分布不确定性。最后,我们开发了一个集合预测网络(EPN),该网络(EPN)包含FRN和DMN的输出以进行最终的CVR预测。在这个阶段,我们冻结了FRN并用最近一段时间的样品训练DMN和EPN,因此有效地缓解了分布差异。据我们所知,这是在小规模推荐方案中针对DDF问题的CVR预测第一次研究。实验结果对现实世界数据集验证了我们的MetacVR和Online A / B测试的优越性也表明我们的模型在PCVR上实现了11.92%的令人印象深刻的收益和GMV的8.64%。
translated by 谷歌翻译
促销活动在电子商务平台上变得更加重要和普遍,以吸引客户和提升销售。但是,推荐系统中的点击率(CTR)预测方法无法处理此类情况,因为:1)他们无法概括为服务,因为在线数据分布是不确定的,因为可能正在推出的促销潜在的促销; 2)在不够重视方案信号的情况下,它们无法学习在每个场景中共存的不同特征表示模式。在这项工作中,我们提出了方案自适应混合的专家(相同),这是一个简单而有效的模型,用于促销和正常情况。从技术上讲,它通过采用多个专家来学习专家来遵循专家混合的想法,这些特征表示通过注意机制通过特征门控网络(FGN)进行调制。为了获得高质量的表示,我们设计了一个堆叠的并行关注单元(SPAU),以帮助每个专家更好地处理用户行为序列。为了解决分布不确定性,从时间序列预测的角度精确地设计了一组场景信号,并馈入FGN,其输出与来自每个专家的特征表示连接,以学会注意。因此,特征表示的混合是自适应的场景和用于最终的CTR预测。通过这种方式,每个专家都可以学习鉴别的表示模式。据我们所知,这是第一次推广感知CTR预测的研究。实验结果对现实世界数据集验证了同一的优势。在线A / B测试也表现出同样的促销期间在CTR上的显着增益和5.94%的IPV,分别在正常日内为3.93%和6.57%。
translated by 谷歌翻译
由于缺乏培训数据和异质知识来源,知识接地的对话系统是挑战的。由于培训数据中涵盖的有限主题,现有系统在不良主题上表现不佳。此外,异构知识源使系统概括到其他任务的系统,因为不同知识表示中的知识来源需要不同的知识编码器。为了解决这些挑战,我们呈现插头,将不同知识来源均匀化为知识接地的对话生成任务的统一知识来源的语言模型。插头在对话生成任务上进行预先培训,调节统一的基本知识表示。它可以通过一些培训示例概括到不同下游知识接地的对话一代任务。两个基准测试的实证评估表明,我们的模型越好跨越不同的知识接地任务。它可以在完全监督的设置下实现具有最先进的方法的可比性,并且显着优于零拍摄和少量拍摄设置中的其他方法。
translated by 谷歌翻译
卷积神经网络(CNNS)在许多实际应用中成功了。但是,它们的高计算和存储要求通常使它们难以在资源受限的设备上部署。为了解决这个问题,已经提出了许多修剪算法用于CNN,但大多数人不能将CNNS提交给合理的水平。在本文中,我们提出了一种基于递归最小二乘(RLS)优化的训练和修剪CNN的新颖算法。在为某些时期培训CNN之后,我们的算法组合了逆输入自相关矩阵和权重矩阵,以按层评估和修剪不重要的输入通道或节点层。然后,我们的算法将继续培训修剪的网络,并且在修剪的网络恢复旧网络的完整性能之前,不会进行下一次修剪。此外,对于CNN,所提出的算法可用于前馈神经网络(FNN)。在MNIST,CIFAR-10和SVHN数据集上的三个实验表明,我们的算法可以实现更合理的修剪,并且具有比其他四个流行的修剪算法更高的学习效率。
translated by 谷歌翻译
由于视频帧之间的庞大本地冗余和复杂的全局依赖性,这是一种具有挑战性的任务。该研究的最近进步主要由3D卷积神经网络和视觉变压器推动。虽然3D卷积可以有效地聚合本地上下文来抑制来自小3D邻域的本地冗余,但由于接收领域有限,它缺乏捕获全局依赖性的能力。或者,视觉变压器可以通过自我关注机制有效地捕获远程依赖性,同时具有在每层中所有令牌之间的盲目相似性比较来降低本地冗余的限制。基于这些观察,我们提出了一种新颖的统一变压器(统一机),其以简洁的变压器格式无缝地整合3D卷积和时空自我关注的优点,并在计算和准确性之间实现了优选的平衡。与传统的变形金刚不同,我们的关系聚合器可以通过在浅层和深层中学习本地和全球令牌亲和力来解决时空冗余和依赖性。我们对流行的视频基准进行了广泛的实验,例如动力学-400,动力学-600,以及某种东西 - 某种东西 - 某种东西 - 某种东西 - 某种东西。只有ImageNet-1K预磨料,我们的统一器在动力学-400 /动力学-600上实现了82.9%/ 84.8%的前1个精度,同时需要比其他最先进的方法更少的gflops。对于某些东西而言,我们的制服分别实现了新的最先进的表演,分别实现了60.9%和71.2%的前1个精度。代码可在https://github.com/sense-x/uniformer获得。
translated by 谷歌翻译
软机械设计与控制的共同优化需要快速实现现实验证的快速手段。现有的创建管道不允许软机器的SWIFT原型,以便快速测试各种设计配置和控制策略。这项工作提出了一种用于快速迭代设计和制造小型化模块化硅氧烷弹性体的机器人鱼类的管道。模块化设计允许具有不同配置的机器人鱼类简单快速迭代,以帮助目前对设计优化方法的开发的研究。所提出的机器人鱼可以用作标准化的测试平台,可以在哪些性能度量如推力和运动范围之类的标准化测试平台。我们进一步展示了能够测量输入压力,尾部变形和推力的水下评估设置的设计。制造和实验评估具有不同刚度和内部气动室配置的多种机器人鱼原型。机器人的灵活模块化设计原理及其评估平台解锁了更有效的软机器人鱼类的可能性,将来有利于未来设计优化和水下勘探的研究。
translated by 谷歌翻译
股票运动预测(SMP)旨在预测上市公司的股份量股份,由于金融市场的挥发性,这是一个具有挑战性的任务。最近的财务研究表明,动量溢出效应在股票波动中发挥着重要作用。然而,以前的研究通常只学习相关公司之间的简单连接信息,这不可避免地未能模仿真实金融市场中上市公司的复杂关系。为了解决这个问题,我们首先建立一个更全面的市场知识图(MKG),其中包含有限的公司,包括上市公司及其相关的高管,以及包括明确关系和隐性关系的混合关系。之后,我们提出了一种新颖的双重关注网络,以了解基于构造的MKG用于库存预测的势头溢出信号。对九个SOTA基线构建数据集的实证实验表明,所提出的丹林公司能够改善与构造的MKG的库存预测。
translated by 谷歌翻译
随着深度学习和智能车辆的兴起,智能助手已成为促进驾驶和提供额外功能的基本内部组件。汽车智能助理应该能够处理一般的和与汽车有关的命令,并执行相应的操作,减轻驾驶和提高安全性。但是,对于低资源语言存在数据稀缺问题,妨碍了研究和应用的发展。在本文中,我们介绍了一个新的DataSet,粤式视听语音识别(CI-AVSR),用于粤语中的车载命令识别,具有视频和音频数据。它由令人宣传的30个粤语发言者记录的200个车载命令的4,984个样本(8.3小时)组成。此外,我们使用常见的内部内部背景噪声增强我们的数据集来模拟真实环境,产生比收集的数据集大10倍。我们提供我们数据集的清洁和增强版本的详细统计信息。此外,我们实施了两个多模式基线以证明CI-AVSR的有效性。实验结果表明,利用视觉信号提高了模型的整体性能。虽然我们的最佳模型可以在清洁测试集上实现相当大的质量,但嘈杂数据的语音识别质量仍然是较差的,并且仍然是真正的车载语音识别系统的极其具有挑战性的任务。数据集和代码将在https://github.com/hltchkust/ci-avsr发布。
translated by 谷歌翻译
根据文本描述检索目标视频是巨大实用价值的任务,并且在过去几年中受到了不断的关注。在本文中,我们专注于多查询视频检索的较少设置,其中提供了多个查询,以便搜索视频档案。首先表明,多查询检索任务是更务实的,代表现实世界用例,更好地评估当前模型的检索能力,从而应得进一步调查与更普遍的单程检索再现。然后,我们提出了几种新方法,用于利用训练时间来利用多个查询,以改善从常规单查验训练模型的简单组合多个查询的相似性输出。我们的模型在三个不同的数据集中始终如一地占有几种竞争基础。例如,Recall @ 1可以在MSR-VTT上提高4.7点,在MSVD上的4.1点和Gatex上的11.7点,在最先进的Clip4Clip模型上构建的强大基线。我们相信进一步的建模努力将为这种方向带来新的见解,并在现实世界视频检索应用中表现更好的新系统。代码可在https://github.com/princetonvisualai/mqvr获得。
translated by 谷歌翻译
Pawlak粗糙集和邻居粗糙集是两个最常见的粗糙设置理论模型。 Pawlawk可以使用等价类来表示知识,但无法处理连续数据;邻域粗糙集可以处理连续数据,但它失去了使用等价类代表知识的能力。为此,本文介绍了基于格兰拉球计算的粒状粗糙集。颗粒球粗糙集可以同时代表佩皮克粗集,以及邻域粗糙集,以实现两者的统一表示。这使得粒度球粗糙集不仅可以处理连续数据,而且可以使用对知识表示的等价类。此外,我们提出了一种颗粒球粗糙集的实现算法。基准数据集的实验符合证明,由于颗粒球计算的鲁棒性和适应性的组合,与Pawlak粗糙集和传统的邻居粗糙相比,粒状球粗糙集的学习准确性得到了大大提高放。颗粒球粗糙集也优于九流行或最先进的特征选择方法。
translated by 谷歌翻译