Vascular shunt insertion is a fundamental surgical procedure used to temporarily restore blood flow to tissues. It is often performed in the field after major trauma. We formulate a problem of automated vascular shunt insertion and propose a pipeline to perform Automated Vascular Shunt Insertion (AVSI) using a da Vinci Research Kit. The pipeline uses a learned visual model to estimate the locus of the vessel rim, plans a grasp on the rim, and moves to grasp at that point. The first robot gripper then pulls the rim to stretch open the vessel with a dilation motion. The second robot gripper then proceeds to insert a shunt into the vessel phantom (a model of the blood vessel) with a chamfer tilt followed by a screw motion. Results suggest that AVSI achieves a high success rate even with tight tolerances and varying vessel orientations up to 30{\deg}. Supplementary material, dataset, videos, and visualizations can be found at https://sites.google.com/berkeley.edu/autolab-avsi.
translated by 谷歌翻译
人类广泛利用视觉和触摸作为互补的感官,视觉提供有关场景的全球信息,并在操纵过程中触摸当地信息而不会受到阻塞。在这项工作中,我们提出了一个新颖的框架,用于以一种自我监督的方式学习多任务视觉执行表示。我们设计了一种机制,该机制使机器人能够自主收集空间对齐的视觉和触觉数据,这是下游任务的关键属性。然后,我们使用交叉模式对比损失训练视觉和触觉编码器将这些配对的感觉输入嵌入共享潜在空间中。对学习的表示形式进行评估,而无需对5个感知和控制任务进行微调,涉及可变形表面:触觉分类,接触定位,异常检测(例如,手术幻影肿瘤触诊),触觉搜索,例如,视觉疑问(例如,在遮挡的情况下,都可以从视觉询问中进行触觉搜索),以及沿布边缘和电缆的触觉伺服。博学的表示形式在毛巾功能分类上达到了80%的成功率,手术材料中异常检测的平均成功率为73%,视觉引导触觉搜索的平均成功率和87.8%的平均伺服距离沿电缆和服装的平均伺服距离为87.8%。接缝。这些结果表明,学习的表示形式的灵活性,并朝着对机器人控制的任务不合时宜的视觉表达表示迈出了一步。
translated by 谷歌翻译
折叠服装可靠,有效地是由于服装的复杂动力学和高尺寸配置空间,在机器人操作中是一项漫长的挑战。一种直观的方法是最初在折叠之前将服装操纵到典型的平滑配置。在这项工作中,我们开发了一种可靠且高效的双人系统,将用户定义的指令视为折叠线,将最初弄皱的服装操纵为(1)平滑和(2)折叠配置。我们的主要贡献是一种新型的神经网络体系结构,能够预测成对的握把姿势,以参数化各种双人动作原始序列。在从4300次人类注销和自我监督的动作中学习后,机器人能够平均从120年代以下的随机初始配置折叠服装,成功率为93%。现实世界实验表明,该系统能够概括到不同颜色,形状和刚度的服装。虽然先前的工作每小时达到3-6倍(FPH),但SpeedFolding却达到30-40 FPH。
translated by 谷歌翻译
多养殖养殖具有环境优势,但比单一养殖需要更修剪。我们介绍用于自动修剪的新型硬件和算法。自主系统使用高架摄像头从物理规模的花园测试床中收集数据,利用学识渊博的植物表型卷积神经网络和边界磁盘跟踪算法来评估单个植物分布并每天估算花园的状态。从这个花园状态下,Alphagardensim选择植物自主修剪。训练有素的神经网络检测并靶向工厂上的特定修发点。实验评估了两种与农业机器人龙门系统兼容的定制设计的修剪工具,并通过受控算法进行了自主削减。我们提出了四个60天的花园周期的结果。结果表明,该系统可以自主实现0.94个归一化的植物多样性,并在修剪剪切的同时保持平均冠层覆盖率为0.84,到周期结束时。有关代码,视频和数据集,请参见https://sites.google.com/berkeley.edu/pruningpolyculture。
translated by 谷歌翻译
电缆在许多环境中无处不在,但容易出现自我闭合和结,使它们难以感知和操纵。挑战通常会随着电缆长度而增加:长电缆需要更复杂的松弛管理和策略,以促进可观察性和可及性。在本文中,我们专注于使用双边机器人自动弄清长达3米的电缆。我们开发了新的运动原语,以有效地解开长电缆和专门用于此任务的新型Gripper Jaws。我们提出了缠结操作(SGTM)的滑动和抓握,该算法将这些原始物与RGBD视觉构成迭代性毫无障碍。SGTM在隔离的外手上取消了67%的成功率,图8节和更复杂的配置上的50%。可以在https://sites.google.com/view/rss-2022-untangling/home上找到补充材料,可视化和视频。
translated by 谷歌翻译
堆叠提高了架子上的存储效率,但是缺乏可见性和可访问性使机器人难以揭示和提取目标对象的机械搜索问题。在本文中,我们将横向访问机械搜索问题扩展到带有堆叠项目的架子,并引入了两种新颖的政策 - 堆叠场景(DARSS)和Monte Carlo Tree搜索堆叠场景(MCTSSS)的分配区域减少 - 使用Destacking和恢复行动。 MCTSS通过在每个潜在行动后考虑未来的状态来改善先前的LookAhead政策。在1200次模拟和18个物理试验中进行的实验,配备了刀片和吸力杯,这表明命令和重新攻击动作可以揭示目标对象的模拟成功率为82---100%,而在物理实验中获得了66----100%对于搜索密集包装的架子至关重要。在仿真实验中,这两种策略的表现都优于基线,并获得相似的成功率,但与具有完整状态信息的Oracle政策相比采取了更多步骤。在模拟和物理实验中,DARS在中位数步骤中的表现优于MCTSS,以揭示目标,但是MCTSS在物理实验中的成功率更高,表明对感知噪声的稳健性。请参阅https://sites.google.com/berkeley.edu/stax-ray,以获取补充材料。
translated by 谷歌翻译
模拟到现实的转移已成为一种流行且非常成功的方法,用于培训各种任务的机器人控制政策。但是,确定在模拟中训练的政策何时准备将其转移到物理世界通常是一个挑战。部署经过很少的模拟数据训练的策略可能会导致物理硬件的不可靠和危险行为。另一方面,模拟中的过度训练会导致策略过度拟合模拟器的视觉外观和动力学。在这项工作中,我们研究了自动确定在模拟中训练的策略何时可以可靠地转移到物理机器人的策略。我们在机器人织物操纵的背景下专门研究了这些思想,因为成功建模织物的动力学和视觉外观的困难,成功的SIM2Real转移尤其具有挑战性。导致织物平滑任务表明我们的切换标准与实际的性能很好地相关。特别是,我们基于信心的切换标准在培训总预算的55-60%之内达到了87.2-93.7%的平均最终面料覆盖率。有关代码和补充材料,请参见https://tinyurl.com/lsc-case。
translated by 谷歌翻译
机器人舰队的商业和工业部署在处决期间通常会落在遥远的人类遥控者身上,当时机器人处于危险之中或无法取得任务进展。通过持续学习,随着时间的推移,从偏远人类的干预措施也可以用来改善机器人机队控制政策。一个核心问题是如何有效地将人类关注分配给单个机器人。先前的工作在单机器人的单人类设置中解决了这一点。我们正式化了交互式车队学习(IFL)设置,其中多个机器人可以交互查询并向多个人类主管学习。我们提出了一个完全实施的开源IFL基准套件,以评估IFL算法的GPU加速ISAAC健身环境。我们提出了Fleet-Dagger,这是一个IFL算法的家庭,并将一种新颖的Fleet Dagger算法与模拟中的4个基准进行了比较。我们还使用4个ABB Yumi机器人臂进行了1000个物理块式实验试验。实验表明,人类向机器人的分配显着影响机器人车队的性能,并且我们的算法比基线的算法获得了人类努力回报的8.8倍。有关代码,视频和补充材料,请参见https://tinyurl.com/fleet-dagger。
translated by 谷歌翻译
为了解决复杂环境中的任务,机器人需要从经验中学习。深度强化学习是一种常见的机器人学习方法,但需要大量的反复试验才能学习,从而限制了其在物理世界中的部署。结果,机器人学习的许多进步都取决于模拟器。另一方面,模拟器内部的学习无法捕获现实世界的复杂性,很容易模拟器不准确,并且由此产生的行为并不适应世界上的变化。 Dreamer算法最近通过在学习的世界模型中进行计划,表现出巨大的希望,可以从少量互动中学习,从而超过了视频游戏中的纯强化学习。学习一个世界模型来预测潜在行动的结果,使计划可以在想象中进行计划,从而减少了真实环境中所需的反复试验量。但是,尚不清楚梦想家是否可以促进更快地学习物理机器人。在本文中,我们将Dreamer应用于4个机器人,以直接在网上学习,直接在现实世界中,而无需模拟器。 Dreamer训练一个四倍的机器人,从头开始,站起来,站起来,仅在1小时内就没有重置。然后,我们推动机器人,发现Dreamer在10分钟内适应以承受扰动或迅速翻身并站起来。在两个不同的机器人臂上,Dreamer学会了直接从相机图像和稀疏的奖励中挑选和放置多个物体,从而接近人类的性能。在轮式机器人上,Dreamer学会了纯粹从相机图像导航到目标位置,从而自动解决有关机器人方向的歧义。在所有实验中使用相同的超参数,我们发现Dreamer能够在现实世界中在线学习,建立强大的基线。我们释放我们的基础架构,用于世界模型在机器人学习中的未来应用。
translated by 谷歌翻译
最近的工作表明,2臂“ Fling”运动对于服装平滑可能是有效的。我们考虑单臂弹性运动。与几乎不需要机器人轨迹参数调整的2臂fling运动不同,单臂fling运动对轨迹参数很敏感。我们考虑一个单一的6多机器人臂,该机器人臂学习跨越轨迹以实现高衣覆盖率。给定服装抓握点,机器人在物理实验中探索了不同的参数化fling轨迹。为了提高学习效率,我们提出了一种粗到精细的学习方法,该方法首先使用多军匪徒(MAB)框架有效地找到候选动作,然后通过连续优化方法来完善。此外,我们提出了基于Fling Fall结果不确定性的新颖培训和执行时间停止标准。与基线相比,我们表明所提出的方法显着加速学习。此外,由于通过自学人员收集的类似服装的先前经验,新服装的MAB学习时间最多减少了87%。我们评估了6种服装类型:毛巾,T恤,长袖衬衫,礼服,汗衫和牛仔裤。结果表明,使用先前的经验,机器人需要30分钟以下的时间才能为达到60-94%覆盖率的新型服装学习一项动作。
translated by 谷歌翻译