校准仍然是脑电脑接口(BCI)中用户体验的重要问题。甚至在开始使用BCI之前,常见的实验设计往往涉及提高认知疲劳的冗长的训练期。通过依赖于先进的机器学习技术,例如转移学习,可以减少或抑制这种依赖的校准。在Riemannian BCI上建立,我们提出了一种简单有效的方案,可以在不同主题记录的数据上培训分类器,以减少校准,同时保持良好的性能。本文的主要新颖性是提出一种独特的方法,可以应用于非常不同的范式。为了展示这种方法的稳健性,我们对三个BCI范例的多个数据集进行了元分析:事件相关的电位(P300),电机图像和SSVEP。依靠MoABB开源框架来确保实验的再现性和统计分析,结果清楚地表明,该方法可以应用于任何类型的BCI范例,并且在大多数情况下都可以显着提高分级性可靠性。我们指出了一些关键特征,以进一步提高转移学习方法。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
不确定性量化(UQ)有助于基于收集的观察和不确定域知识来制定值得信赖的预测。随着各种应用中深度学习的增加,需要使深层模型更加可靠的高效UQ方法的需求。在可以从有效处理不确定性中受益的应用中,是基于深度学习的微分方程(DE)求解器。我们适应了几种最先进的UQ方法,以获得DE解决方案的预测性不确定性,并显示出四种不同类型的结果。
translated by 谷歌翻译
动态MRI可以捕获具有高对比度的软组织器官中的时间解剖变化,但是获得的序列通常遭受有限的体积覆盖,这使得器官形状轨迹的高分辨率重建在时间研究中的主要挑战。由于腹部器官形状的变异性跨越时间和受试者,本研究的目的是朝向3D致密速度测量来完全覆盖整个表面并提取有意义的特征,其特征在于观察到的器官变形并实现临床作用或决定。我们在深呼吸运动期间提出了一种用于表征膀胱表面动力学的管道。对于紧凑的形状表示,首先使用重建的时间体积来使用LDDMM框架建立专用的动态4D网状序列。然后,我们从诸如网格伸长和失真的机械参数执行器官动力学的统计表征。由于我们将器官引用作为非平面,因此我们还使用平均曲率变化为度量来量化表面演变。然而,曲率的数值计算强烈地取决于表面参数化。为了应对这一依赖性,我们采用了一种用于表面变形分析的新方法。独立于参数化并最小化测地曲线的长度,通过最小化Dirichlet能量,它使表面曲线平滑地朝向球体。 eulerian PDE方法用于从曲线缩短流中导出形状描述符。使用Laplace Beltrami操作员特征函数来计算各个运动模式之间的接口,用于球形映射。用于提取用于局部控制的模拟形状轨迹的表征相关曲线的应用演示了所提出的形状描述符的稳定性。
translated by 谷歌翻译
大自然的一个迷人方面在于它能够产生大型和多样化的生物体,这些生物都在他们的利基中都很高兴。相比之下,大多数AI算法专注于向给定问题找到一个有效的解决方案。除了表现外,旨在实现多样性是处理勘探开发权衡的便捷方式,在学习中发挥着核心作用。当返回的集合包含对所考虑的问题的几个工作解决方案时,它还允许增加鲁棒性,使其适用于机器人等真实应用。质量 - 多样性(QD)方法是为此目的设计的进化算法。本文提出了一种新颖的QD - PG,它结合了政策梯度算法的强度和质量多样性方法,在连续控制环境中产生了各种和高性能的神经政策的集合。这项工作的主要贡献是引入多样性政策梯度(DPG),该梯度(DPG)利用时刻级别的信息以采样有效的方式培养更多样化的策略。具体而言,QD-PG从地图 - E LITES网格中选择神经控制器,并使用两个基于梯度的突变运算符来提高质量和多样性,从而产生稳定的人口更新。我们的结果表明,QD - PG产生了各种解决方案的集合,解决了具有挑战性的勘探和控制问题,同时是比其进化竞争对手更高的样本效率的两个数量级。
translated by 谷歌翻译