Terahertz频段(0.1---10 THZ)中的无线通信被视为未来第六代(6G)无线通信系统的关键促进技术之一,超出了大量多重输入多重输出(大量MIMO)技术。但是,THZ频率的非常高的传播衰减和分子吸收通常限制了信号传输距离和覆盖范围。从最近在可重构智能表面(RIS)上实现智能无线电传播环境的突破,我们为多跳RIS RIS辅助通信网络提供了一种新型的混合波束形成方案,以改善THZ波段频率的覆盖范围。特别是,部署了多个被动和可控的RIS,以协助基站(BS)和多个单人体用户之间的传输。我们通过利用最新的深钢筋学习(DRL)来应对传播损失的最新进展,研究了BS在BS和RISS上的模拟光束矩阵的联合设计。为了改善拟议的基于DRL的算法的收敛性,然后设计了两种算法,以初始化数字波束形成和使用交替优化技术的模拟波束形成矩阵。仿真结果表明,与基准相比,我们提出的方案能够改善50 \%的THZ通信范围。此外,还表明,我们提出的基于DRL的方法是解决NP-固定光束形成问题的最先进方法,尤其是当RIS辅助THZ通信网络的信号经历多个啤酒花时。
translated by 谷歌翻译
知识图(kg)嵌入是一种主流方法,用于推理不完整的kg。但是,受其固有浅层和静态体系结构的限制,它们几乎无法处理对复杂逻辑查询的不断上升,这些查询包括逻辑运算符,估算的边缘,多个源实体和未知的中间实体。在这项工作中,我们通过掩盖的预训练和微调策略介绍了知识图变压器(kgtransformer)。我们设计了一种kg三重变换方法,以使变压器能够处理kg,这是通过稀疏(MOE)稀疏激活的混合物进一步增强的。然后,我们将复杂的逻辑查询作为掩盖预测提出,并引入了两阶段掩盖的预训练策略,以提高可转移性和概括性。在两个基准上进行的广泛实验表明,KGTRANSFORMER可以始终超过基于KG的基准和九个内域和室外推理任务的高级编码。此外,KGTRANSFORMER可以通过提供解释给定答案的完整推理路径来解释性。
translated by 谷歌翻译
对接系统对于在线多人游戏中创建公平匹配至关重要,这直接影响玩家的满足感和游戏体验。大多数对接系统在很大程度上取决于对玩家游戏技能的精确估计来构建公平的游戏。但是,新手的技能等级通常是不准确的,因为当前的对接评级算法需要大量游戏才能学习新玩家的真正技能。在早期阶段使用这些不可靠的技能得分通常会导致团队绩效方面的差异,这会导致负面的游戏体验。这被称为对接评级算法的“冷启动”问题。为了克服这个难题,本文提出了QuickSkill,这是一个基于深度学习的新手技能估算框架,以快速探究在线多人游戏中新玩家的能力。 QuickSkill提取了玩家最初的几款游戏中的顺序性能功能,以通过专用的神经网络来预测他/她的未来技能评级,从而在玩家的早期游戏阶段进行准确的技能估计。通过使用Quickskill进行对接,可以在最初的冷门时期大大改善游戏公平性。我们在离线和在线场景中都在流行的移动多人游戏中进行实验。使用两个现实世界中的匿名游戏数据集获得的结果表明,提议的QuickSkill提供了对新手游戏技能的精确估计,从而导致团队技能差异明显降低和更好的玩家游戏体验。据我们所知,提议的Quickskill是第一个解决传统技能评级算法的冷门问题的框架。
translated by 谷歌翻译
不确定性是时间序列预测任务的重要考虑因素。在这项工作中,我们专门致力于量化流量预测的不确定性。为了实现这一目标,我们开发了深层时空的不确定性定量(DeepStuq),可以估计核心和认知不确定性。我们首先利用时空模型来对流量数据的复杂时空相关性进行建模。随后,开发了两个独立的次神经网络,以最大化异质对数可能性,以估计不确定性。为了估计认知不确定性,我们通过整合蒙特卡洛辍学和平均自适应重量的重新训练方法来结合变异推理和深层结合的优点。最后,我们提出了基于温度缩放的后处理校准方法,从而提高了模型的概括能力估计不确定性。在四个公共数据集上进行了广泛的实验,经验结果表明,就点预测和不确定性量化而言,所提出的方法优于最先进的方法。
translated by 谷歌翻译
我们探索了在流行的集中式培训范式(CTDE)中流行的集中式培训范式中的多代理深度强化学习的价值分解解决方案。作为公认的CTDE解决方案,加权QMIX是星际争霸多代理挑战(SMAC)的尖端,并在QMIX上实施了加权方案,以更加重视最佳的关节动作。但是,固定重量需要根据应用程序场景进行手动调整,该场景痛苦地防止加权QMIX用于更广泛的工程应用中。在本文中,我们首先使用普通的一步矩阵游戏(OMG)证明了加权QMIX的缺陷,无论选择重量如何,加权QMIX努力解决非单调的价值分解问题,并具有很大的差异奖励分布。然后,我们将价值分解的问题描述为一种不足的单调的健壮回归问题,并首先尝试从信息理论学习的角度为价值分解问题提供解决方案。我们引入最大Correntropy Criterion(MCC)作为成本函数,以动态调整重量以消除奖励分布中最小值的影响。我们简化了实现,并提出了一种称为MCVD的新算法。对OMG进行的初步实验表明,MCVD可以处理非单调的值分解问题,并且对核带宽选择的耐受性很高。进一步的实验是在合作游动和多个SMAC场景的情况下进行的,其中MCVD表现出前所未有的实施,广泛的适用性和稳定性。
translated by 谷歌翻译
经典的交流范式专注于准确地通过嘈杂的渠道传输位,而香农理论则对可靠通信速率提供了基本的理论限制。在这种方法中,位平均对待,并且通信系统忽略了这些位传达或如何使用的含义。可以预见的是,对智力和简洁性的未来沟通将发挥主导作用,连接的智能代理的扩散需要对编码传输范式进行根本性的重新思考,以支持地平线上的新通信形态。最近的“语义通信”概念提供了有希望的研究方向。将语义指南注入编码传输设计以实现语义感知通信,这表现出了进一步突破性和可靠性的巨大潜力。本文阐明了语义引导的源和频道编码作为语义通信的传输范式,该传输范式可以利用数据语义的多样性和无线通道多样性,以增强整个系统性能。我们介绍一般的系统体系结构和关键技术,并指出有关此主题的一些开放问题。
translated by 谷歌翻译
变压器的扎实结果使它们在各种自然语言和视觉任务中占上风。作为变压器中的默认组件,层归一化(LN)将每个令牌内的激活归一化,以增强稳健性。但是,LN需要在推理以及除法和平方根操作中进行直接统计计算,从而导致硬件效率低下。更重要的是,用其他硬件有效的标准化方案(例如,批发归一化)代替LN会导致性能较低,甚至在训练中崩溃。我们发现,这种困境是由激活统计的异常行为引起的,包括对迭代的大波动和跨层的极端异常值。为了解决这些问题,我们提出了统一的归一化(UN),可以通过与其他线性操作融合并在LN上实现可比性的性能来加快推断。联合国通过量身定制的波动平滑策略校准激活和梯度统计来努力提高性能。同时,采用自适应离群过滤策略来避免在本文中在理论上证明并在实验上验证的训练中崩溃。我们证明,通过对语言和视觉任务进行广泛的实验,联合国可以成为LN的有效替代品。此外,我们评估了我们方法在GPU上的效率。配备了联合国的变压器享受约31%的推理速度和近18%的记忆力减少。代码将在https://github.com/hikvision-research/unified-normalization上发布。
translated by 谷歌翻译
视频过渡效果被广泛用于视频编辑中,以连接镜头,以创建凝聚力和视觉上吸引人的视频。但是,由于缺乏摄影知识和设计技能,非专业人士选择最佳过渡是一个挑战。在本文中,我们介绍了执行自动视频过渡建议(VTR)的主要工作:给定一系列原始视频镜头和伴侣音频,建议每对相邻拍摄的视频过渡。为了解决此任务,我们使用有关编辑软件的公开视频模板收集了一个大规模的视频过渡数据集。然后,我们将VTR作为从视觉/音频到视频过渡的多模式检索问题,并提出了一个新型的多模式匹配框架,由两个部分组成。首先,我们通过视频过渡分类任务了解视频过渡的嵌入。然后,我们提出了一个模型,以学习从视觉/音频输入到视频过渡的匹配对应关系。具体而言,所提出的模型采用多模式变压器来融合视觉和音频信息,并捕获顺序过渡输出中的上下文提示。通过定量和定性实验,我们清楚地证明了我们方法的有效性。值得注意的是,在综合用户研究中,我们的方法获得了与专业编辑者相比的可比分数,同时通过\ textbf {300 \ scalebox {1.25} {$ \ times $}}提高视频编辑效率。我们希望我们的工作能够激发其他研究人员从事这项新任务。数据集和代码在\ url {https://github.com/acherstyx/autotransition}上公开。
translated by 谷歌翻译
电子商务在通过互联网增强商人的能力方面已经大有帮助。为了有效地存储商品并正确安排营销资源,对他们来说,进行准确的总商品价值(GMV)预测非常重要。但是,通过数字化数据的缺乏进行准确的预测是不算平的。在本文中,我们提出了一个解决方案,以更好地预测Apay应用程序内的GMV。得益于Graph Neural网络(GNN),它具有很好的关联不同实体以丰富信息的能力,我们提出了Gaia,Gaia是一个图形神经网络(GNN)模型,具有时间移动意识注意。Gaia利用相关的电子销售商的销售信息,并根据时间依赖性学习邻居相关性。通过测试Apleay的真实数据集并与其他基线进行比较,Gaia表现出最佳性能。盖亚(Gaia)部署在模拟的在线环境中,与基线相比,这也取得了很大的进步。
translated by 谷歌翻译
基于参考的图像超分辨率(REFSR)旨在利用辅助参考(REF)图像为超溶解的低分辨率(LR)图像。最近,RefSR引起了极大的关注,因为它提供了超越单图SR的替代方法。但是,解决REFSR问题有两个关键的挑战:(i)当它们显着不同时,很难匹配LR和Ref图像之间的对应关系; (ii)如何将相关纹理从参考图像转移以补偿LR图像的细节非常具有挑战性。为了解决RefSR的这些问题,本文提出了一个可变形的注意变压器,即DATSR,具有多个尺度,每个尺度由纹理特征编码器(TFE)模块组成,基于参考的可变形注意(RDA)模块和残差功能聚合(RFA)模块。具体而言,TFE首先提取图像转换(例如,亮度)不敏感的LR和REF图像,RDA可以利用多个相关纹理来补偿更多的LR功能信息,而RFA最终汇总了LR功能和相关纹理,以获得更愉快的宜人的质地结果。广泛的实验表明,我们的DATSR在定量和质量上实现了基准数据集上的最新性能。
translated by 谷歌翻译