本报告描述了18个项目,这些项目探讨了如何在国家实验室中将商业云计算服务用于科学计算。这些演示包括在云环境中部署专有软件,以利用已建立的基于云的分析工作流来处理科学数据集。总的来说,这些项目非常成功,并且他们共同认为云计算可以成为国家实验室科学计算的宝贵计算资源。
translated by 谷歌翻译
Hessian矩阵在各种不同的领域中具有许多重要的应用,例如优化,图像处理和统计。在本文中,我们将重点放在使用Python脚本语言和TensorFlow库在深度学习环境中有效计算Hessianmatrices的实际方面。
translated by 谷歌翻译
即插即用(PnP)是一种非凸面框架,它将现代化的先驱(如BM3D或基于深度学习的降噪器)集成到ADMM或其他近端算法中。 PnP的一个优点是,当没有足够的数据进行端到端训练时,可以使用预训练的加速器。尽管最近已经广泛研究了PNP并取得了很大的经验成功,但理论分析甚至解决了最基本的收敛问题。在本文中,我们理论上建立了PNP-FBS和PnP-ADMM的收敛,在一定的Lipschitz条件下,在降噪器上不使用递减步长。然后我们提出真实的光谱正态化,这是一种训练基于深度学习的降噪器的技术,以满足所提出的Lipschitz条件。最后,我们提出验证该理论的实验结果。
translated by 谷歌翻译
差异隐私关注预测质量,同时测量对信息包含在数据中的个人的隐私影响。我们考虑与引起结构化稀疏性的规则制定者的差异私人风险最小化问题。已知这些正则化器是凸的,但它们通常是不可微分的。我们分析了标准的不同私有算法,例如输出扰动,Frank-Wolfe和目标扰动。输出扰动是一种差异私有算法,众所周知,它可以很好地降低强凸的风险。以前的工作已经导出了与维度无关的超额风险界限。在本文中,我们假设一类特定的凸但非光滑正则化器,它们导致广义线性模型的结构化稀疏性和损失函数。我们还考虑差异私有Frank-Wolfeal算法来优化风险最小化问题的双重性。我们得出这两种算法的过度风险界限。两个边界都取决于双范数的单位球的高斯宽度。我们还表明,风险最小化问题的客观扰动等同于双优化问题的输出扰动。这是在差异隐私的背景下分析风险最小化问题的双重优化问题的第一部作品。
translated by 谷歌翻译
我们使用多个移动代理来研究分类问题,这些移动代理能够收集(部分)与未知环境相关的姿势依赖性观察。目标是在有限的时间范围内对图像(例如,大区域的地图)进行分类。我们提出了一个关于代理如何形成本地信念,采取局部行动,从原始部分观察中提取相关特征和规范的网络架构。允许代理商与其邻近的代理商交换信息,并运行分散的共识协议来更新他们自己的信念。它显示了如何利用加强学习技术来实现分类问题的分散实施。我们对MNIST手写digitdataset的实验结果证明了我们提出的框架的有效性。
translated by 谷歌翻译
我们为类别特定的CAD模型提出了一种新颖的基于线的参数化。所提出的参数化使用基于字典的RANSAC方法将所考虑的3D类别特定的CAD模型对象相关联,该方法使用视觉点作为先验,并且在场景的相应强度图像中检测到边缘。关联问题作为经典的几何问题而不是数据集驱动,因此节省了注释数据集中为不同类别对象训练关键点网络的时间和劳动。除了不需要数据集准备之外,该方法还可以完成整个过程,因为此方法仅处理图像一次,因此无需为所有图像中的图像中的每个对象调用网络。 3D-2D边缘关联模块后面是线的截面算法用于恢复对象姿势。该公式优化了物体的形状和姿态,从而有助于更准确地恢复物体3D结构。最后,使用因子图制剂与相机测距法一起构造SLAM问题。
translated by 谷歌翻译
假设我们希望从“用户喜欢项目p或项目q?”形式的配对比较来估计用户的偏好向量w,其中用户和项目都嵌入在低维欧几里德空间中,其距离反映了用户和项目的相似性。这些观察结果出现在许多设置中,包括心理测量学和心理学实验,搜索任务,广告和推荐系统。在这样的任务中,查询可能非常恶劣并且受到不同级别的响应噪声的影响;因此,我们的目标是根据先前比较的结​​果选择最具信息量的对。我们提供了关于贪婪信息最大化在这种情况下的益处和挑战的新理论见解,并开发了最大化信息增益下限的双重策略,并且分别简单地分析和计算。我们使用来自区域世界数据集的模拟响应来验证我们的策略,通过它们与贪婪信息最大化相似的性能,以及它们优越的偏好估计,最先进的选择方法以及随机查询。
translated by 谷歌翻译
多模态运动(例如陆地,航空和水上运动)越来越受到机器人研究的兴趣,因为它改善了机器人的环境适应性,运动多功能性和操作灵活性。在地面多个运动机器人中,混合机器人的优势源于其多种(两种或更多种)运动模式,其中机器人可以根据遇到的地形条件进行选择。然而,在改善多个运动模式之间的运动模式转换的自主性方面存在许多挑战。这项工作提出了一种实现atrack-legged四足机器人步骤协商的自主运动模式转换的方法。通过提出的比较滚动和行走运动模式的能量性能的标准,实现了决策过程的自主性。为了实现能源评估目的,提出了两个攀登阶段以实现平稳的步骤谈判行为。模拟显示自主运动模式转换被实现用于具有不同高度的步骤的协商。所提出的方法足够通用,可以在对其运动能量性能进行一些预先研究之后用于其他混合机器人。
translated by 谷歌翻译
最近推出的Tsetlin Machine(TM)在几个基准测试中提供了具有竞争力的模式分类准确性,在命题逻辑中构成了具有易于解释的连接条款的模式。在本文中,我们通过引入一种新型的TMs,即回归Tsetlin机器(RTM)来超越模式分类。简而言之,我们修改TM的内部推理机制,以便将输入模式转换为单连续输出,而不是转换为不同的类别。我们通过以下方式实现这一目标:(1)使用TM的连接条款来捕获任意复杂的模式; (2)通过新颖的投票和规范化机制将这些模式映射到连续输出; (3)采用反馈方案更新TM条款,以尽量减少回归误差。反馈方案使用新的激活概率函数来稳定更新,同时整个系统收敛到准确的输入 - 输出映射。使用具有和不具有噪声的六个不同的人工数据集来评估所提出的方法的性能。将RTM的性能与Classical Tsetlin Machine(CTM)和MulticlassTsetlin Machine(MTM)进行比较。我们的实证结果表明,RTM获得了噪声和无噪声数据集的最佳训练和测试结果,条款数量较少。反过来,这使用更少的计算资源转化为更高的回归准确度。
translated by 谷歌翻译
在本文中,我们将一种新的有前景的模式分类工具,即Tsetlin Machine(TM)应用于疾病预测领域。 TMis是可解释的,因为它基于在命题逻辑中操纵表达式,利用大型Tsetlin Automata(TA)团队。除了可解释之外,由于其低计算成本和处理噪音的能力,这种方法很有吸引力。为了解决这个问题,我们引入了一种预处理方法来扩展TM,以便它可以处理连续输入。简而言之,我们将连续输入转换为基于阈值的abinary表示。使用人工数据集评估和分析得到的扩展TM。该TM还用于利用数据的时空属性预测菲律宾所有17个地区的登革热疫情。实验结果表明,TM的爆发预测比支持向量机(SVM),决策树(DT)和多层人工神经网络(ANNs)在预测精度和F1分数方面更准确。 。
translated by 谷歌翻译