在硅组织模型中,可以评估磁共振成像的定量模型。这包括对成像生物标志物和组织微结构参数的验证和灵敏度分析。我们提出了一种新的方法来生成心肌微结构的现实数值幻影。我们扩展了以前的研究,该研究考虑了心肌细胞的变异性,心肌细胞(插入式椎间盘)之间的水交换,心肌微结构混乱和四个钣金方向。在该方法的第一阶段,心肌细胞和钣金是通过考虑心肌到骨膜细胞连接的形状变异性和插入式椎间盘而产生的。然后,将薄板汇总和定向在感兴趣的方向上。我们的形态计量学研究表明,数值和真实(文献)心肌细胞数据的体积,长度以及一级和次要轴的分布之间没有显着差异($ p> 0.01 $)。结构相关性分析证实了硅内组织与实际组织的混乱类别相同。此外,心肌细胞的模拟螺旋角(HA)和输入HA(参考值)之间的绝对角度差($ 4.3^\ Circ \ PM 3.1^\ Circ $)与所测量HA之间的绝对角差有很好的一致性使用实验性心脏扩散张量成像(CDTI)和组织学(参考值)(Holmes等,2000)($ 3.7^\ Circ \ PM6.4^\ Circ $)和(Scollan等,1998)($ 4.9) ^\ circ \ pm 14.6^\ circ $)。使用结构张量成像(黄金标准)和实验性CDTI,输入和模拟CDTI的特征向量和模拟CDTI的角度之间的角度距离小于测量角度之间的角度距离。这些结果证实,所提出的方法比以前的研究可以为心肌产生更丰富的数值幻象。
translated by 谷歌翻译
策略培训是一种多学科的康复方法,它教导技能减少中风后认知障碍者的残疾。与传统的康复方法相比,在随机,对照临床试验中已显示策略培训是促进独立性的更可行和有效的干预措施。标准化的保真度评估用于通过检查康复视频记录中的指导和定向口头提示来衡量治疗原则的依从性。尽管用于检测指导和定向的口头提示的忠诚度评估对于单一站点研究是有效的,但在大型多站点务实的务实试验中,它可能会变成劳动力密集,耗时且昂贵。为了应对广泛的战略培训实施的这一挑战,我们利用自然语言处理(NLP)技术来自动化策略培训保真度评估,即自动从康复会议的视频记录中自动识别有指导和指导的口头提示。我们开发了一种基于规则的NLP算法,一个长期术语存储器(LSTM)模型以及该任务的变压器(BERT)模型的双向编码器表示。 BERT模型以0.8075的F1得分实现了最佳性能。这项研究的发现在心理学和康复干预研究和实践方面具有广泛的希望。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
Climate change is threatening human health in unprecedented orders and many ways. These threats are expected to grow unless effective and evidence-based policies are developed and acted upon to minimize or eliminate them. Attaining such a task requires the highest degree of the flow of knowledge from science into policy. The multidisciplinary, location-specific, and vastness of published science makes it challenging to keep track of novel work in this area, as well as making the traditional knowledge synthesis methods inefficient in infusing science into policy. To this end, we consider developing multiple domain-specific language models (LMs) with different variations from Climate- and Health-related information, which can serve as a foundational step toward capturing available knowledge to enable solving different tasks, such as detecting similarities between climate- and health-related concepts, fact-checking, relation extraction, evidence of health effects to policy text generation, and more. To our knowledge, this is the first work that proposes developing multiple domain-specific language models for the considered domains. We will make the developed models, resources, and codebase available for the researchers.
translated by 谷歌翻译
This paper describes important considerations and challenges associated with online reinforcement-learning based waveform selection for target identification in frequency modulated continuous wave (FMCW) automotive radar systems. We present a novel learning approach based on satisficing Thompson sampling, which quickly identifies a waveform expected to yield satisfactory classification performance. We demonstrate through measurement-level simulations that effective waveform selection strategies can be quickly learned, even in cases where the radar must select from a large catalog of candidate waveforms. The radar learns to adaptively select a bandwidth for appropriate resolution and a slow-time unimodular code for interference mitigation in the scene of interest by optimizing an expected classification metric.
translated by 谷歌翻译
When should an online reinforcement learning-based frequency agile cognitive radar be expected to outperform a rule-based adaptive waveform selection strategy? We seek insight regarding this question by examining a dynamic spectrum access scenario, in which the radar wishes to transmit in the widest unoccupied bandwidth during each pulse repetition interval. Online learning is compared to a fixed rule-based sense-and-avoid strategy. We show that given a simple Markov channel model, the problem can be examined analytically for simple cases via stochastic dominance. Additionally, we show that for more realistic channel assumptions, learning-based approaches demonstrate greater ability to generalize. However, for short time-horizon problems that are well-specified, we find that machine learning approaches may perform poorly due to the inherent limitation of convergence time. We draw conclusions as to when learning-based approaches are expected to be beneficial and provide guidelines for future study.
translated by 谷歌翻译
Text classification is a natural language processing (NLP) task relevant to many commercial applications, like e-commerce and customer service. Naturally, classifying such excerpts accurately often represents a challenge, due to intrinsic language aspects, like irony and nuance. To accomplish this task, one must provide a robust numerical representation for documents, a process known as embedding. Embedding represents a key NLP field nowadays, having faced a significant advance in the last decade, especially after the introduction of the word-to-vector concept and the popularization of Deep Learning models for solving NLP tasks, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer-based Language Models (TLMs). Despite the impressive achievements in this field, the literature coverage regarding generating embeddings for Brazilian Portuguese texts is scarce, especially when considering commercial user reviews. Therefore, this work aims to provide a comprehensive experimental study of embedding approaches targeting a binary sentiment classification of user reviews in Brazilian Portuguese. This study includes from classical (Bag-of-Words) to state-of-the-art (Transformer-based) NLP models. The methods are evaluated with five open-source databases with pre-defined data partitions made available in an open digital repository to encourage reproducibility. The Fine-tuned TLMs achieved the best results for all cases, being followed by the Feature-based TLM, LSTM, and CNN, with alternate ranks, depending on the database under analysis.
translated by 谷歌翻译
Micron-scale robots (ubots) have recently shown great promise for emerging medical applications, and accurate control of ubots is a critical next step to deploying them in real systems. In this work, we develop the idea of a nonlinear mismatch controller to compensate for the mismatch between the disturbed unicycle model of a rolling ubot and trajectory data collected during an experiment. We exploit the differential flatness property of the rolling ubot model to generate a mapping from the desired state trajectory to nominal control actions. Due to model mismatch and parameter estimation error, the nominal control actions will not exactly reproduce the desired state trajectory. We employ a Gaussian Process (GP) to learn the model mismatch as a function of the desired control actions, and correct the nominal control actions using a least-squares optimization. We demonstrate the performance of our online learning algorithm in simulation, where we show that the model mismatch makes some desired states unreachable. Finally, we validate our approach in an experiment and show that the error metrics are reduced by up to 40%.
translated by 谷歌翻译
In medical image analysis, automated segmentation of multi-component anatomical structures, which often have a spectrum of potential anomalies and pathologies, is a challenging task. In this work, we develop a multi-step approach using U-Net-based neural networks to initially detect anomalies (bone marrow lesions, bone cysts) in the distal femur, proximal tibia and patella from 3D magnetic resonance (MR) images of the knee in individuals with varying grades of osteoarthritis. Subsequently, the extracted data are used for downstream tasks involving semantic segmentation of individual bone and cartilage volumes as well as bone anomalies. For anomaly detection, the U-Net-based models were developed to reconstruct the bone profiles of the femur and tibia in images via inpainting so anomalous bone regions could be replaced with close to normal appearances. The reconstruction error was used to detect bone anomalies. A second anomaly-aware network, which was compared to anomaly-na\"ive segmentation networks, was used to provide a final automated segmentation of the femoral, tibial and patellar bones and cartilages from the knee MR images containing a spectrum of bone anomalies. The anomaly-aware segmentation approach provided up to 58% reduction in Hausdorff distances for bone segmentations compared to the results from the anomaly-na\"ive segmentation networks. In addition, the anomaly-aware networks were able to detect bone lesions in the MR images with greater sensitivity and specificity (area under the receiver operating characteristic curve [AUC] up to 0.896) compared to the anomaly-na\"ive segmentation networks (AUC up to 0.874).
translated by 谷歌翻译
The GLOM architecture proposed by Hinton [2021] is a recurrent neural network for parsing an image into a hierarchy of wholes and parts. When a part is ambiguous, GLOM assumes that the ambiguity can be resolved by allowing the part to make multi-modal predictions for the pose and identity of the whole to which it belongs and then using attention to similar predictions coming from other possibly ambiguous parts to settle on a common mode that is predicted by several different parts. In this study, we describe a highly simplified version of GLOM that allows us to assess the effectiveness of this way of dealing with ambiguity. Our results show that, with supervised training, GLOM is able to successfully form islands of very similar embedding vectors for all of the locations occupied by the same object and it is also robust to strong noise injections in the input and to out-of-distribution input transformations.
translated by 谷歌翻译