1954年,Alston S. Homeer公开了数值分析的原则,其中最初的基质分解的现代治疗之一是赞成(嵌段)Lu分解 - 基质的分解为下三角基质和上三角基质的产物。现在,矩阵分解已成为机器学习中的核心技术,主要原体是由于拟合神经网络的后传播算法的发展。本调查的唯一目的是在数值线性代数和矩阵分析中提供对概念和数学工具的自我概述,以便在后续部分中无缝引入矩阵分解技术及其应用。然而,我们清楚地实现了我们无法涵盖关于矩阵分解的所有有用和有趣的结果,并且鉴于缺乏本讨论的范围,例如,欧几里德空间,隐士空间,希尔伯特空间和复杂的事物的分离分析领域。我们将读者转到线性代数领域的文献,以便更详细地对相关领域介绍。
translated by 谷歌翻译
在本文中,我们提出了一个具有自动相关性测定(ARD)的概率模型,用于学习插值分解(ID),该模型通常用于低级别近似,特征选择,并识别数据中的隐藏模式,其中矩阵因子是潜在的。与每个数据维度关联的变量。在指定子空间上具有支持的先前密度用于解决观察到的矩阵的分量分量的大小的约束。采用基于Gibbs抽样的贝叶斯推理程序。我们在各种现实世界数据集上评估了该模型即使与固定潜在尺寸设置为矩阵等级的香草贝叶斯ID算法相比,甚至会导致较小的重建错误。
translated by 谷歌翻译
跨域推荐(CDR)可以帮助客户在不同域中找到更多令人满意的项目。现有的CDR模型主要使用普通用户或映射功能作为域之间的桥梁,但在充分利用跨域的额外知识方面的探索非常有限。在本文中,我们建议将CDR的知识图(kg)纳入,这使不同领域中的项目能够共享知识。为此,我们首先从Freebase KG构建了一个新的数据集AmazonKG4CDR和Amazon评论数据的一个子集(两个域对:电影音乐,电影书籍)。这个新的数据集有助于将知识与CDR内部和跨域项目桥接。然后,我们提出了一个新的框架,KG感知的神经集体矩阵分解(KG-NEUCMF),利用KG来丰富项目表示。它首先通过图形卷积自动编码器学习项目嵌入,以从kg中的相邻和高阶邻居中捕获域特异性和域一般知识。然后,我们最大程度地提高了从kg和用户项目矩阵中学到的项目嵌入之间的共同信息,以建立跨域关系以获得更好的CDR。最后,我们对新建的数据集进行了广泛的实验,并证明我们的模型明显优于表现最佳的基线。
translated by 谷歌翻译
基于分数的生成模型在发电质量和可能性方面具有出色的性能。他们通过将参数化的分数网络与一阶数据得分功能匹配来建模数据分布。分数网络可用于定义ODE(“基于得分的扩散ode”),以进行精确的似然评估。但是,颂歌的可能性与得分匹配目标之间的关系尚不清楚。在这项工作中,我们证明,匹配一阶得分不足以通过在最大可能性和分数匹配目标之间显示差距来最大化ode的可能性。为了填补这一空白,我们表明,可以通过控制第一,第二和三阶得分匹配错误来界定颂歌的负可能性;我们进一步提出了一种新型的高阶denoising评分匹配方法,以实现基于得分的扩散ODE的最大似然训练。我们的算法确保高阶匹配误差受训练错误和较低级错误的限制。我们从经验上观察到,通过高阶匹配,基于得分的扩散频率在合成数据和CIFAR-10上都具有更好的可能性,同时保留了高生成质量。
translated by 谷歌翻译
由于空间分辨率的巨大改进,4K内容可以为消费者提供更严肃的视觉体验。但是,由于分辨率扩大和特定的扭曲,现有的盲图质量评估(BIQA)方法不适合原始和升级的4K内容物。在本文中,我们提出了一个针对4K内容的深度学习的BIQA模型,一方面可以识别True和pseudo 4K内容,另一方面可以评估其感知视觉质量。考虑到高空间分辨率可以代表更丰富的高频信息的特征,我们首先提出了基于灰色级别的共发生矩阵(GLCM)的纹理复杂度度量,以从4K图像中选择三个代表性图像贴片,这可以减少计算复杂性,被证明对通过实验的总体质量预测非常有效。然后,我们从卷积神经网络(CNN)的中间层中提取不同种类的视觉特征,并将它们集成到质量感知的特征表示中。最后,使用两个多层感知(MLP)网络用于将质量感知功能映射到类概率和每个贴片的质量分数中。总体质量指数是通过平均贴片结果汇总获得的。提出的模型通过多任务学习方式进行了训练,我们引入了不确定性原理,以平衡分类和回归任务的损失。实验结果表明,所提出的模型的表现均优于所有4K内容质量评估数据库中的BIQA指标。
translated by 谷歌翻译
在本文中,我们介绍了一种用于学习非负矩阵分解(NMF)的概率模型,该模型通常用于预测数据中缺失值并在数据中找到隐藏模式,其中矩阵因子是与每个数据维度相关的潜在变量。通过在非负子空间上支持先验的先验,可以处理潜在因素的非阴性约束。采用基于Gibbs抽样的贝叶斯推理程序。我们在几个现实世界中的数据集上评估了该模型,包括Movielens 100K和Movielens 1M具有不同尺寸和尺寸的Movielens,并表明所提出的贝叶斯NMF GRRN模型可导致更好的预测,并避免与现有的贝叶斯NMF方法相比,避免过度适应。
translated by 谷歌翻译
深度估计是近年来全景图像3D重建的关键步骤。 Panorama图像保持完整的空间信息,但与互联的投影引入失真。在本文中,我们提出了一种基于自适应组合扩张的卷积的ACDNet,以预测单眼地全景图像的密集深度图。具体地,我们将卷积核与不同的扩张相结合,以延长昼夜投影中的接收领域。同时,我们介绍了一个自适应渠道 - 明智的融合模块,总结了特征图,并在频道的接收领域中获得不同的关注区域。由于利用通道的注意力构建自适应通道 - 明智融合模块,网络可以有效地捕获和利用跨通道上下文信息。最后,我们对三个数据集(虚拟和现实世界)进行深度估计实验,实验结果表明,我们所提出的ACDNET基本上优于当前的最先进(SOTA)方法。我们的代码和模型参数在https://github.com/zcq15/acdnet中访问。
translated by 谷歌翻译
建设通用机器人在人类水平的各种环境中对大量的任务进行众所周知的复杂。它需要机器人学习是采样的,更概括的,可概括的,组成和增量。在这项工作中,我们介绍了一个称为SAGCI-System的系统学习框架,实现了超过四种要求。我们的系统首先采用由安装在机器人手腕上的摄像机收集的原始点云作为输入,并产生所代表为URDF的周围环境的初始建模。我们的系统采用了一个加载URDF的学习增强的可分辨率模拟。然后,机器人利用交互式感知来与环境交互,并修改URDF。利用模拟,我们提出了一种新的基于模型的RL算法,这些RL算法结合了以上的对象和机器人为中心的方法,以有效地产生完成操纵任务的策略。我们应用我们的系统,以进行仿真和现实世界的铰接物体操纵。广泛的实验表明了我们提出的学习框架的有效性。 https://sites.google.com/view/egci提供了补充材料和视频。
translated by 谷歌翻译
联合学习(FL)已成为一个重要的机器学习范例,其中全局模型根据分布式客户端的私有数据培训。然而,由于分布转移,现有的大多数流体算法不能保证对不同客户或不同的样本组的性能公平。最近的研究侧重于在客户之间实现公平性,但它们忽视了敏感属性(例如,性别和/或种族)形成的不同群体的公平,这在实际应用中是重要和实用的。为了弥合这一差距,我们制定统一小组公平的目标,该目标是在不同群体中学习具有类似表现的公平全球模式。为了实现任意敏感属性的统一组公平,我们提出了一种新颖的FL算法,命名为集团分布强制性联邦平均(G-DRFA),其跨组减轻了与收敛速度的理论分析的分布转移。具体而言,我们将联邦全球模型的性能视为目标,并采用分布稳健的技术,以最大化最坏性地组的性能在组重新传递集团的不确定性上。我们在实验中验证了G-DRFA算法的优点,结果表明,G-DRFA算法优于统一组公平现有的公平联合学习算法。
translated by 谷歌翻译
我们将简要介绍本文Trecvid2021中WHU-nercms的实验方法和结果。今年,我们参加了实例搜索的自动和交互式任务(INS)。对于自动任务,检索目标分为两个部分,人检索和动作检索。我们采用了两阶段方法,包括对人检索的面部检测和面部识别以及由三种基于框架的人类对象相互作用检测方法和两种基于视频的一般动作检测方法组成的两种动作检测方法。在那之后,人的检索结果和动作检索结果被融合以初始化结果排名列表。此外,我们尝试使用互补方法进一步提高搜索性能。对于交互式任务,我们在融合结果上测试了两种不同的交互策略。我们分别为自动和交互式任务提交4次运行。每次运行的引入显示在表1中。官方评估表明,所提出的策略在自动和交互式轨道中排名第一。
translated by 谷歌翻译