The body of research on classification of solar panel arrays from aerial imagery is increasing, yet there are still not many public benchmark datasets. This paper introduces two novel benchmark datasets for classifying and localizing solar panel arrays in Denmark: A human annotated dataset for classification and segmentation, as well as a classification dataset acquired using self-reported data from the Danish national building registry. We explore the performance of prior works on the new benchmark dataset, and present results after fine-tuning models using a similar approach as recent works. Furthermore, we train models of newer architectures and provide benchmark baselines to our datasets in several scenarios. We believe the release of these datasets may improve future research in both local and global geospatial domains for identifying and mapping of solar panel arrays from aerial imagery. The data is accessible at https://osf.io/aj539/.
translated by 谷歌翻译
Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm).
translated by 谷歌翻译
Early on during a pandemic, vaccine availability is limited, requiring prioritisation of different population groups. Evaluating vaccine allocation is therefore a crucial element of pandemics response. In the present work, we develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the COVID-19 pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modelling approach which combines a compartmental infection-dynamics simulation, a coarse-grained, data-driven causal model and literature estimates for immunity waning. We compare Israel's implemented vaccine allocation strategy in 2021 to counterfactual strategies such as no prioritisation, prioritisation of younger age groups or a strict risk-ranked approach; we find that Israel's implemented strategy was indeed highly effective. We also study the marginal impact of increasing vaccine uptake for a given age group and find that increasing vaccinations in the elderly is most effective at preventing severe cases, whereas additional vaccinations for middle-aged groups reduce infections most effectively. Due to its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this flexibility by investigating vaccine allocation strategies for a pandemic with characteristics of the Spanish Flu. Our approach thus helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability and spreading rates.
translated by 谷歌翻译
Electricity prices in liberalized markets are determined by the supply and demand for electric power, which are in turn driven by various external influences that vary strongly in time. In perfect competition, the merit order principle describes that dispatchable power plants enter the market in the order of their marginal costs to meet the residual load, i.e. the difference of load and renewable generation. Many market models implement this principle to predict electricity prices but typically require certain assumptions and simplifications. In this article, we present an explainable machine learning model for the prices on the German day-ahead market, which substantially outperforms a benchmark model based on the merit order principle. Our model is designed for the ex-post analysis of prices and thus builds on various external features. Using Shapley Additive exPlanation (SHAP) values, we can disentangle the role of the different features and quantify their importance from empiric data. Load, wind and solar generation are most important, as expected, but wind power appears to affect prices stronger than solar power does. Fuel prices also rank highly and show nontrivial dependencies, including strong interactions with other features revealed by a SHAP interaction analysis. Large generation ramps are correlated with high prices, again with strong feature interactions, due to the limited flexibility of nuclear and lignite plants. Our results further contribute to model development by providing quantitative insights directly from data.
translated by 谷歌翻译
We investigate whether three types of post hoc model explanations--feature attribution, concept activation, and training point ranking--are effective for detecting a model's reliance on spurious signals in the training data. Specifically, we consider the scenario where the spurious signal to be detected is unknown, at test-time, to the user of the explanation method. We design an empirical methodology that uses semi-synthetic datasets along with pre-specified spurious artifacts to obtain models that verifiably rely on these spurious training signals. We then provide a suite of metrics that assess an explanation method's reliability for spurious signal detection under various conditions. We find that the post hoc explanation methods tested are ineffective when the spurious artifact is unknown at test-time especially for non-visible artifacts like a background blur. Further, we find that feature attribution methods are susceptible to erroneously indicating dependence on spurious signals even when the model being explained does not rely on spurious artifacts. This finding casts doubt on the utility of these approaches, in the hands of a practitioner, for detecting a model's reliance on spurious signals.
translated by 谷歌翻译
We study the generalization of over-parameterized classifiers where Empirical Risk Minimization (ERM) for learning leads to zero training error. In these over-parameterized settings there are many global minima with zero training error, some of which generalize better than others. We show that under certain conditions the fraction of "bad" global minima with a true error larger than {\epsilon} decays to zero exponentially fast with the number of training data n. The bound depends on the distribution of the true error over the set of classifier functions used for the given classification problem, and does not necessarily depend on the size or complexity (e.g. the number of parameters) of the classifier function set. This might explain the unexpectedly good generalization even of highly over-parameterized Neural Networks. We support our mathematical framework with experiments on a synthetic data set and a subset of MNIST.
translated by 谷歌翻译
The pattern of pedestrian crashes varies greatly depending on lighting circumstances, emphasizing the need of examining pedestrian crashes in various lighting conditions. Using Louisiana pedestrian fatal and injury crash data (2010-2019), this study applied Association Rules Mining (ARM) to identify the hidden pattern of crash risk factors according to three different lighting conditions (daylight, dark-with-streetlight, and dark-no-streetlight). Based on the generated rules, the results show that daylight pedestrian crashes are associated with children (less than 15 years), senior pedestrians (greater than 64 years), older drivers (>64 years), and other driving behaviors such as failure to yield, inattentive/distracted, illness/fatigue/asleep. Additionally, young drivers (15-24 years) are involved in severe pedestrian crashes in daylight conditions. This study also found pedestrian alcohol/drug involvement as the most frequent item in the dark-with-streetlight condition. This crash type is particularly associated with pedestrian action (crossing intersection/midblock), driver age (55-64 years), speed limit (30-35 mph), and specific area type (business with mixed residential area). Fatal pedestrian crashes are found to be associated with roadways with high-speed limits (>50 mph) during the dark without streetlight condition. Some other risk factors linked with high-speed limit related crashes are pedestrians walking with/against the traffic, presence of pedestrian dark clothing, pedestrian alcohol/drug involvement. The research findings are expected to provide an improved understanding of the underlying relationships between pedestrian crash risk factors and specific lighting conditions. Highway safety experts can utilize these findings to conduct a decision-making process for selecting effective countermeasures to reduce pedestrian crashes strategically.
translated by 谷歌翻译
Diffusion-based generative models have had a high impact on the computer vision and speech processing communities these past years. Besides data generation tasks, they have also been employed for data restoration tasks like speech enhancement and dereverberation. While discriminative models have traditionally been argued to be more powerful e.g. for speech enhancement, generative diffusion approaches have recently been shown to narrow this performance gap considerably. In this paper, we systematically compare the performance of generative diffusion models and discriminative approaches on different speech restoration tasks. For this, we extend our prior contributions on diffusion-based speech enhancement in the complex time-frequency domain to the task of bandwith extension. We then compare it to a discriminatively trained neural network with the same network architecture on three restoration tasks, namely speech denoising, dereverberation and bandwidth extension. We observe that the generative approach performs globally better than its discriminative counterpart on all tasks, with the strongest benefit for non-additive distortion models, like in dereverberation and bandwidth extension. Code and audio examples can be found online at https://uhh.de/inf-sp-sgmsemultitask
translated by 谷歌翻译
近年来,机器人技术的最佳控制越来越流行,并且已应用于许多涉及复杂动力系统的应用中。闭环最佳控制策略包括模型预测控制(MPC)和通过ILQR优化的时变线性控制器。但是,此类反馈控制器依赖于当前状态的信息,从而限制了机器人需要记住其在采取行动和相应计划的机器人应用程序范围。最近提出的系统级合成(SLS)框架通过带有内存的较富裕控制器结构来规避此限制。在这项工作中,我们建议通过将SLS扩展到跟踪涉及非线性系统和非二次成本功能的问题,以最佳设计具有记忆力的反应性预期机器人技能。我们以两种情况来展示我们的方法,这些方案利用任务精确度和对象在模拟和真实环境中使用7轴的Franka Emika机器人提供的挑选和位置任务。
translated by 谷歌翻译
大多数现有的时间序列分类(TSC)模型缺乏可解释性,难以检查。可解释的机器学习模型可以帮助发现数据中的模式,并为域专家提供易于理解的见解。在这项研究中,我们提出了神经符号时间序列分类(NSTSC),这是一种利用信号时间逻辑(STL)和神经网络(NN)的神经符号模型,使用多视图数据表示并将模型表示为TSC任务人类可读,可解释的公式。在NSTSC中,每个神经元与符号表达相关,即STL(sub)公式。因此,NSTSC的输出可以解释为类似于自然语言的STL公式,描述了隐藏在数据中的时间和逻辑关系。我们提出了一个基于NSTSC的分类器,该分类器采用决策树方法来学习公式结构并完成多类TSC任务。 WSTL提出的平滑激活功能允许以端到端的方式学习模型。我们在来自UCR时间序列存储库中的小鼠和基准数据集的现实伤口愈合数据集上测试NSTSC,这表明NSTSC与最先进的模型实现了可比的性能。此外,NSTSC可以生成与域知识匹配的可解释公式。
translated by 谷歌翻译