以准确的,稳健和快速的方式拟合人体,手或面对稀疏输入信号的参数模型,这具有重要的是在AR和VR场景中显着改善浸入。解决这些问题的系统中的一个常见的第一步是直接从输入数据重新分配参数模型的参数。这种方法是快速,稳健的,并且是迭代最小化算法的良好起点。后者搜索最小的能量函数,通常由编码关于问题的结构的知识的数据项和前沿组成。虽然这无疑是一个非常成功的食谱,但前锋往往是手工定义的启发式,发现不同术语之间的正确平衡,以实现高质量的结果是一个非琐碎的任务。此外,转换和优化这些系统以表现方式运行,需要定制实现,要求从工程师和域专家进行大量时间投资。在这项工作中,我们建立了近期学习优化的进步,并提出了由Classic Levenberg-Marquardt算法启发的更新规则。我们展示了所提出的神经优化器对从2D地标的头戴式装置和面部配件的3D体表估计问题的有效性。我们的方法可以很容易地应用于新的模型拟合问题,并提供竞争替代方案,在准确性和速度方面都提供了良好的调谐“传统”模型拟合管道。
translated by 谷歌翻译
PEPIT是一种Python软件包,旨在简化对可能涉及梯度,投影,近端或线性优化oracels的大型一阶优化方法的最坏情况分析的最坏情况分析,以及它们的近似或布赖曼变体。简而言之,PEPIT是一种封装,可实现一级优化方法的计算机辅助案例分析。关键的潜在思想是施放执行最坏情况分析的问题,通常称为性能估计问题(PEP),作为可以在数字上解决的半纤维程序(SDP)。为此,只需要包用户才能像他们已经实现的那样写出一阶方法。然后,包裹处理SDP建模部件,并且最坏情况分析通过标准求解器进行数字地执行。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
强化学习的标准制定缺乏指定禁止和禁止行为的实用方式。最常见的是,从业者通过手动工程来指定行为规范的任务,这是一个需要几个迭代的反向直观的过程,并且易于奖励代理人。在这项工作中,我们认为,几乎完全用于安全RL的受限制的RL,也有可能大大减少应用加强学习项目中奖励规范所花费的工作量。为此,我们建议在CMDP框架中指定行为偏好,并使用拉格朗日方法,该方法寻求解决代理程序的策略和拉格朗日乘法器之间的最小问题,以自动称量每个行为约束。具体而言,我们研究了如何调整CMDP,以便解决基于目标的任务,同时遵守一组行为约束,并提出对Sac-Lagrangian算法的修改以处理若干约束的具有挑战性的情况。我们对这一框架进行了一系列持续控制任务,该任务与用于视频游戏中NPC设计的加固学习应用相关。
translated by 谷歌翻译
凭借其恶劣天气条件和测量速度的能力,雷达传感器已经成为汽车景观的一部分超过二十年的鲁棒性。最近的高清晰度(HD)成像雷达的进展使角分辨率低于程度,从而接近激光扫描性能。然而,数据量为HD雷达提供和计算成本来估计角度位置仍然是一个挑战。在本文中,我们提出了一种新颖的高清雷达传感模型FFT-RADNET,其消除了计算范围 - 方位角多普勒3D张量的开销,从而从范围多普勒频谱恢复角度。 FFT-RADNET培训均以检测车辆和分段免费驾驶空间。在两个任务中,它与最新的基于雷达的模型竞争,同时需要更少的计算和内存。此外,我们在各种环境(城市街道,公路,农村路)中,从同步汽车级传感器(相机,激光,高清雷达)收集和注释了2小时的原始数据。这个独特的数据集,“雷达,lidar等人”的inc-命名的radial是在https://github.com/valeoai/radial上获得的。
translated by 谷歌翻译
事件摄像机捕获观察到的场景中的照明的变化,而不是累积光以创建图像。因此,它们允许在高速运动和复杂的照明条件下的应用,其中传统的框架传感器显示它们的模糊和过度或未出现的像素的限制。由于这些独特的属性,它们表示现在是与其相关的应用的高度有吸引力的传感器。在这些神经形式相机的普及升高之后,已经研究了基于事件的光流(EBOF)。然而,最近的高清神经晶体传感器的到来挑战现有方法,因为事件像素阵列的分辨率增加和更高的吞吐量。作为这些点的答案,我们提出了一种用于实时计算光流的优化框架,以及低分辨率的事件摄像机。我们以“逆指数距离表面”的形式为稀疏事件流制定了一种新的密集表示。它用作临时框架,专为使用证明,最先进的基于框架的光流量计算方法而设计。我们评估我们在低分辨率和高分辨率驾驶序列上的方法,并表明它通常比当前现有技术更好地实现更好的结果,同时也达到更高的帧速率,250Hz在346 x 260像素和77Hz在1280 x 720像素。
translated by 谷歌翻译
体育视频分析是由于各种应用领域的普遍研究课题,从多媒体智能设备带来了用户量身定制的易消化,以分析运动员的表现。体育视频任务是Mediaeval 2021基准测试的一部分。此任务可以从视频中解决细粒度的动作检测和分类。重点是乒乓球比赛的录音。自2019年以来运行,该任务从未在自然条件下录制的未经监测视频提供了分类挑战,每个行程都有已知的时间边界。今年,数据集延长并提供了未经注释的未经监测视频的检测挑战。这项工作旨在为体育教练和玩家创造工具,以分析体育绩效。在这种技术可以建立运动分析和玩家分析,以丰富运动员的培训经验,提高他们的表现。
translated by 谷歌翻译
在迅速增长的海上风电场市场中出现了增加风力涡轮机尺寸和距离的全球趋势。在英国,海上风电业于2019年生产了英国最多的电力,前一年增加了19.6%。目前,英国将进一步增加产量,旨在增加安装的涡轮机容量74.7%,如最近的冠村租赁轮次反映。通过如此巨大的增长,该部门现在正在寻求机器人和人工智能(RAI),以解决生命周期服务障碍,以支持可持续和有利可图的海上风能生产。如今,RAI应用主要用于支持运营和维护的短期目标。然而,前进,RAI在海上风基础设施的全部生命周期中有可能发挥关键作用,从测量,规划,设计,物流,运营支持,培训和退役。本文介绍了离岸可再生能源部门的RAI的第一个系统评论之一。在当前和未来的要求方面,在行业和学术界的离岸能源需求分析了rai的最先进的。我们的评论还包括对支持RAI的投资,监管和技能开发的详细评估。通过专利和学术出版数据库进行详细分析确定的关键趋势,提供了对安全合规性和可靠性的自主平台认证等障碍的见解,这是自主车队中可扩展性的数字架构,适应性居民运营和优化的适应性规划人机互动对人与自治助理的信赖伙伴关系。
translated by 谷歌翻译
我们介绍了Shennong,一个Python工具箱和命令行实用程序,用于语音功能提取。它实现了广泛的既定现实算法状态,包括诸如熔融频率纤维滤波器或预测的线性滤波器,预先训练的神经网络,音高估计器以及扬声器归一化方法和后处理算法的谱时间滤波器。 Shennong是一种开源,易于使用,可靠和可扩展的框架。 Python的使用使得集成到其他语音建模和机器学习工具方便。它旨在替换或补充几种异质软件,例如Kaldi或Praat。在描述神农软件架构,其核心组件和实现的算法之后,本文说明了三种应用的使用:语音特征在手机辨别任务上的性能进行比较,作为语音函数的声音轨道长度归一化模型的分析用于训练的持续时间和各种噪声条件下的音高估计算法的比较。
translated by 谷歌翻译
在许多计算机视觉应用程序中,对高动态范围(HDR)场景的能力至关重要。然而,传统传感器的动态范围基本上受其井容量的限制,导致明亮场景部件的饱和度。为了克服这种限制,新兴传感器提供了用于编码入射辐照度的像素处理能力。在最有前途的编码方案中,模数包装,其导致计算机拍摄场景由来自包裹的低动态(LDR)传感器图像的辐照法展开算法计算的计算摄影问题。在这里,我们设计了一种基于神经网络的算法,优于先前的辐照度展示方法,更重要的是,我们设计了一种感知的激发灵感的“螳螂”编码方案,从而更有效地将HDR场景包装到LDR传感器中。结合我们的重建框架,Mantissacam在模型快照HDR成像方法中实现了最先进的结果。我们展示了我们在模拟中的效果,并显示了用可编程传感器实现的原型尾涂的初步结果。
translated by 谷歌翻译