We report on experiments for the fingerprint modality conducted during the First BioSecure Residential Workshop. Two reference systems for fingerprint verification have been tested together with two additional non-reference systems. These systems follow different approaches of fingerprint processing and are discussed in detail. Fusion experiments I volving different combinations of the available systems are presented. The experimental results show that the best recognition strategy involves both minutiae-based and correlation-based measurements. Regarding the fusion experiments, the best relative improvement is obtained when fusing systems that are based on heterogeneous strategies for feature extraction and/or matching. The best combinations of two/three/four systems always include the best individual systems whereas the best verification performance is obtained when combining all the available systems.
translated by 谷歌翻译
指纹图像质量会严重影响指纹识别系统的性能。本文回顾了指纹图像质量计算的现有方法。我们还使用MCYT数据库(包括9000个指纹图像)实施,测试和比较了其中的选择。实验结果表明,大多数算法的行为类似。
translated by 谷歌翻译
研究了图像质量降解对自动指纹识别验证性能的影响。我们在不同的指纹图像质量下研究了基于细节和脊信息的两个指纹匹配器的性能。发现基于山脊的系统比基于小小的图像质量标准的基于细节的系统更适合图像质量降解。
translated by 谷歌翻译
提出了一种生成软糖手指的新方法。描述了一个中型的假指纹数据库,并在其上评估了两个不同的指纹验证系统。实验中考虑了三种不同的情况,即:使用真实的指纹注册和测试,用假指纹进行注册和测试,以及带有真实指纹的注册,并用假指纹进行测试。给出了光学和热扫描传感器的结果。两种系统都被证明容易受到直接攻击。
translated by 谷歌翻译
Periocular refers to the region of the face that surrounds the eye socket. This is a feature-rich area that can be used by itself to determine the identity of an individual. It is especially useful when the iris or the face cannot be reliably acquired. This can be the case of unconstrained or uncooperative scenarios, where the face may appear partially occluded, or the subject-to-camera distance may be high. However, it has received revived attention during the pandemic due to masked faces, leaving the ocular region as the only visible facial area, even in controlled scenarios. This paper discusses the state-of-the-art of periocular biometrics, giving an overall framework of its most significant research aspects.
translated by 谷歌翻译
Feedforward fully convolutional neural networks currently dominate in semantic segmentation of 3D point clouds. Despite their great success, they suffer from the loss of local information at low-level layers, posing significant challenges to accurate scene segmentation and precise object boundary delineation. Prior works either address this issue by post-processing or jointly learn object boundaries to implicitly improve feature encoding of the networks. These approaches often require additional modules which are difficult to integrate into the original architecture. To improve the segmentation near object boundaries, we propose a boundary-aware feature propagation mechanism. This mechanism is achieved by exploiting a multi-task learning framework that aims to explicitly guide the boundaries to their original locations. With one shared encoder, our network outputs (i) boundary localization, (ii) prediction of directions pointing to the object's interior, and (iii) semantic segmentation, in three parallel streams. The predicted boundaries and directions are fused to propagate the learned features to refine the segmentation. We conduct extensive experiments on the S3DIS and SensatUrban datasets against various baseline methods, demonstrating that our proposed approach yields consistent improvements by reducing boundary errors. Our code is available at https://github.com/shenglandu/PushBoundary.
translated by 谷歌翻译
Cartesian impedance control is a type of motion control strategy for robots that improves safety in partially unknown environments by achieving a compliant behavior of the robot with respect to its external forces. This compliant robot behavior has the added benefit of allowing physical human guidance of the robot. In this paper, we propose a C++ implementation of compliance control valid for any torque-commanded robotic manipulator. The proposed controller implements Cartesian impedance control to track a desired end-effector pose. Additionally, joint impedance is projected in the nullspace of the Cartesian robot motion to track a desired robot joint configuration without perturbing the Cartesian motion of the robot. The proposed implementation also allows the robot to apply desired forces and torques to its environment. Several safety features such as filtering, rate limiting, and saturation are included in the proposed implementation. The core functionalities are in a re-usable base library and a Robot Operating System (ROS) ros_control integration is provided on top of that. The implementation was tested with the KUKA LBR iiwa robot and the Franka Emika Robot (Panda) both in simulation and with the physical robots.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.
translated by 谷歌翻译
Pre-training is an effective technique for ensuring robust performance on a variety of machine learning tasks. It typically depends on large-scale crawled corpora that can result in toxic or biased models. Such data can also be problematic with respect to copyright, attribution, and privacy. Pre-training with synthetic tasks and data is a promising way of alleviating such concerns since no real-world information is ingested by the model. Our goal in this paper is to understand what makes for a good pre-trained model when using synthetic resources. We answer this question in the context of neural machine translation by considering two novel approaches to translation model pre-training. Our first approach studies the effect of pre-training on obfuscated data derived from a parallel corpus by mapping words to a vocabulary of 'nonsense' tokens. Our second approach explores the effect of pre-training on procedurally generated synthetic parallel data that does not depend on any real human language corpus. Our empirical evaluation on multiple language pairs shows that, to a surprising degree, the benefits of pre-training can be realized even with obfuscated or purely synthetic parallel data. In our analysis, we consider the extent to which obfuscated and synthetic pre-training techniques can be used to mitigate the issue of hallucinated model toxicity.
translated by 谷歌翻译