论一般相对论中的长期分类问题,我们采用机器学习和现代数据科学的富有成效技术采取小说视角。特别是,我们模拟Petrov的分类时间的分类,并表明前馈神经网络可以实现高度的成功。我们还展示了数据可视化技术如何具有维度降低的技术可以帮助分析不同类型的刻度的结构中的底层图案。
translated by 谷歌翻译
对业务流程的预测监控是流程挖掘的子领域,旨在预测下一个事件的特征或下一个事件的序列。虽然已经提出了基于深度学习的多种方法,主要是经常发生的神经网络和卷积神经网络,但它们都不是真正利用过程模型中可用的结构信息。本文提出了一种基于图形卷积网络和经常性神经网络的方法,所述内部网络从过程模型中使用信息。真实事件日志的实验评估表明,我们的方法更加一致,更优于当前的最先进的方法。
translated by 谷歌翻译
生产精确的天气预报和不确定的不确定性的可靠量化是一个开放的科学挑战。到目前为止,集团预测是最成功的方法,以产生相关预测的方法以及估计其不确定性。集合预测的主要局限性是高计算成本,难以捕获和量化不同的不确定性来源,特别是与模型误差相关的源。在这项工作中,进行概念证据模型实验,以检查培训的ANN的性能,以预测系统的校正状态和使用单个确定性预测作为输入的状态不确定性。我们比较不同的培训策略:一个基于使用集合预测的平均值和传播作为目标的直接培训,另一个依赖于使用确定性预测作为目标的决定性预测,其中来自数据隐含地学习不确定性。对于最后一种方法,提出和评估了两个替代损失函数,基于数据观察似然和基于误差的本地估计来评估另一个丢失功能。在不同的交货时间和方案中检查网络的性能,在没有模型错误的情况下。使用Lorenz'96模型的实验表明,ANNS能够模拟集合预测的一些属性,如最不可预测模式的过滤和预测不确定性的状态相关量化。此外,ANNS提供了在模型误差存在下的预测不确定性的可靠估计。
translated by 谷歌翻译
可说明的人工智能(XAI)的目前的模型显示出在提出统计上纠缠特征时,可以显而易见和量化缺乏可靠性,当提出统计上纠缠的特征时,为训练深层分类器。深度学习在临床试验中的应用增加了预测神经发育障碍的早期诊断,如自闭症谱系障碍(ASD)。然而,包含更可靠的显着图,以获得使用神经活动特征的更可靠和可解释的度量,对于诊断或临床试验中的实际应用仍然不充分。此外,在ASD研究中,包含使用神经措施来预测观察面部情绪的深层分类器相对未探索。因此,在本研究中,我们提出了对脑电图(EEG)的卷积神经网络(CNN)的评估,用于基于新颖的删除(咆哮)方法,以恢复分类器中使用的高度相关特征。具体而言,我们比较众所周知的相关性图,例如层性相关性传播(LRP),图案网络,图案归因和平滑级平方。本研究是第一个在通常开发的和ASD个体中使用内部训练的CNN内训练的基于EEG的面部情感识别来实现更透明的特征相关计算。
translated by 谷歌翻译
由于BERT出现,变压器语言模型和转移学习已成为自然语言理解任务的最先进。最近,一些作品适用于特定领域的预训练,专制模型,例如科学论文,医疗文件等。在这项工作中,我们呈现RoberTuito,用于西班牙语中的用户生成内容的预先训练的语言模型。我们在西班牙语中培训了罗伯特托5亿推文。关于涉及用户生成文本的4个任务的基准测试显示,罗伯特托多于西班牙语的其他预先接受的语言模型。为了帮助进一步研究,我们将罗伯特多公开可在HuggingFace Model Hub上提供。
translated by 谷歌翻译
移动屏幕的布局是UI设计研究和对屏幕的语义理解的关键数据源。但是,现有数据集中的UI布局通常是嘈杂的,具有与其视觉表示的不匹配,或者由难以分析和模型的通用或应用特定类型组成。在本文中,我们提出了使用深度学习方法的粘土管道,用于去噪UI布局,允许我们在比例下自动改进现有的移动UI布局数据集。我们的管道采用屏幕截图和原始UI布局,通过删除不正确的节点并向每个节点分配语义有意义的类型来注释原始布局。为了实验我们的数据清洁管道,我们根据来自Rico的截图和原始布局,创建59,555个人注释的屏幕布局的粘土数据集,该网站上是一个公共移动UI语料库。我们的深度模型可实现高精度,F1分数为82.7%,用于检测没有有效的视觉表示的布局对象,85.9%用于识别对象类型,这显着优于启发式基线。我们的工作为创建大规模高质量的UI布局数据集提供了用于数据驱动的移动UI研究的基础,并减少了手动标签的需要,这些努力非常昂贵。
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
基于深度学习的NLP模型被发现容易受到Word替代扰动的影响。在他们被广泛采用之前,需要解决坚固性的基本问题。沿着这条线,我们提出了一个正式的框架来评估词语级鲁棒性。首先,要研究模型的安全区域,我们引入了稳健的半径,这是模型可以抵抗任何扰动的边界。计算最大鲁棒性半径的计算变硬,我们估计其上限和下限。我们将攻击方法作为寻求上限和设计伪动态编程算法的攻击方法,用于更紧密的上限。然后验证方法用于下限。此外,为了评估在安全半径之外的区域的稳健性,我们从另一个视图中重新征服鲁棒性:量化。引入了具有严格统计保障的鲁棒度量,以测量对抗性示例的定量,这表明该模型对安全半径之外的扰动的敏感性。该度量有助于我们弄清楚为什么伯特这样的最先进的模型可以很容易地被几个单词替换所吸引,但在现实世界的噪音存在下概括很好。
translated by 谷歌翻译
确实,卷积神经网络(CNN)更合适。然而,固定内核大小使传统的CNN太具体,既不灵活也不有利于特征学习,从而影响分类准确性。不同内核大小网络的卷积可以通过捕获更多辨别和相关信息来克服这个问题。鉴于此,所提出的解决方案旨在将3D和2D成立网的核心思想与促进混合方案中的HSIC CNN性能提升。生成的\ Textit {注意融合混合网络}(AFNET)基于三个关注融合的并行混合子网,每个块中的不同内核使用高级功能,以增强最终的地面图。简而言之,AFNET能够选择性地过滤滤除对分类至关重要的辨别特征。与最先进的模型相比,HSI数据集的几次测试为AFNET提供了竞争力的结果。拟议的管道实现,实际上,印度松树的总体准确性为97 \%,博茨瓦纳100 \%,帕尔茨大学,帕维亚中心和萨利纳斯数据集的99 \%。
translated by 谷歌翻译
假新闻在各个领域的社交媒体上广泛传播,这导致了政治,灾害和金融等许多方面的现实世界威胁。大多数现有方法专注于单域假新闻检测(SFND),当这些方法应用于多域假新闻检测时,导致不满意的性能。作为新兴领域,多域假新闻检测(MFND)越来越受到关注。但是,数据分布,例如词频率和传播模式,从域变化,即域移位。面对严重领域转变的挑战,现有的假新闻检测技术对于多域场景表现不佳。因此,要求为MFND设计专业型号。在本文中,我们首先为MFND设计了一个带有域名标签的假新闻数据集的基准,即Weibo21,由4,488个假新闻和来自9个不同领域的4,640个真实新闻组成。我们进一步提出了一种通过利用域门来聚合由专家混合提取的多个表示来聚合的多域假新闻检测模型(MDFend)。实验表明,MDFEND可以显着提高多域假新闻检测的性能。我们的数据集和代码可在https://github.com/kennqiang/mdfend-weibo21获得。
translated by 谷歌翻译