现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
尽管深神经网络的占优势性能,但最近的作品表明它们校准不佳,导致过度自信的预测。由于培训期间的跨熵最小化,因此可以通过过度化来加剧错误烫伤,因为它促进了预测的Softmax概率来匹配单热标签分配。这产生了正确的类别的Pre-SoftMax激活,该类别明显大于剩余的激活。来自文献的最近证据表明,损失函数嵌入隐含或明确最大化的预测熵会产生最先进的校准性能。我们提供了当前最先进的校准损耗的统一约束优化视角。具体地,这些损失可以被视为在Logit距离上施加平等约束的线性惩罚(或拉格朗日)的近似值。这指出了这种潜在的平等约束的一个重要限制,其随后的梯度不断推动非信息解决方案,这可能会阻止在基于梯度的优化期间模型的辨别性能和校准之间的最佳妥协。在我们的观察之后,我们提出了一种基于不平等约束的简单灵活的泛化,这在Logit距离上强加了可控裕度。关于各种图像分类,语义分割和NLP基准的综合实验表明,我们的方法在网络校准方面对这些任务设置了新的最先进的结果,而不会影响辨别性能。代码可在https://github.com/by-liu/mbls上获得。
translated by 谷歌翻译
目前无监督的异常本地化方法依赖于生成模型来学习正常图像的分布,后来用于识别从重建图像上的误差导出的潜在的异常区域。然而,几乎所有先前文献的主要限制是需要采用异常图像来设置特定类阈值以定位异常。这限制了它们在现实方案中的可用性,通常可以访问正常数据。尽管存在这一重大缺点,但只有少数工程才能通过整合在培训期间对关注地图的监督来解决了这一限制。在这项工作中,我们提出了一种新的制定,不需要访问异常来定义阈值的图像。此外,与最近的工作相反,所提出的约束以更具原则的方式配制,利用了在约束优化中的知名知识。特别是,在现有工作中的注意图上的平等限制由不等式约束取代,这允许更灵活性。此外,为了解决基于惩罚的函数的限制,我们使用流行的日志屏障方法的扩展来处理约束。对流行的Brats'19数据集的综合实验表明,该方法的方法显着优于相关文献,为无监督的病变细分建立了新的最先进结果。
translated by 谷歌翻译
最小化分布匹配损失是在图像分类的背景下的域适应的原则方法。但是,在适应分割网络中,它基本上被忽略,目前由对抗模型主导。我们提出了一系列损失函数,鼓励在网络输出空间中直接核心密度匹配,直至从未标记的输入计算的一些几何变换。我们的直接方法而不是使用中间域鉴别器,而不是使用单一损失统一分发匹配和分段。因此,它通过避免额外的对抗步骤来简化分段适应,同时提高培训的质量,稳定性和效率。我们通过网络输出空间的对抗培训使我们对最先进的分段适应的方法并置。在对不同磁共振图像(MRI)方式相互调整脑细分的具有挑战性的任务中,我们的方法在准确性和稳定性方面取得了明显的结果。
translated by 谷歌翻译
空气污染监测平台在预防和减轻污染影响方面发挥着非常重要的作用。绘图信号处理领域的最新进展使得可以使用图表描述和分析空气污染监测网络。其中一个主要应用是使用传感器的子集重新重建图表中的测量信号。使用来自传感器邻居的信息重建信号可以有助于提高网络数据的质量,示例是用相关的相邻节点的缺失数据填充,或者校正与更准确的相邻传感器的漂移传感器。本文比较了各种类型的图形信号重建方法应用于西班牙空气污染参考站的真实数据集。所考虑的方法是拉普拉斯插值,曲线​​图信号处理低通基的曲线曲线信号重建,以及基于内核的曲线图信号重建,并在测量O3,NO2和PM10的实际空气污染数据集上进行比较。示出了重建污染物信号的方法的能力,以及该重建的计算成本。结果表明了基于基于内核的曲线图信号重建的方法的优越性,以及具有大量低成本传感器的空气污染监测网络中的方法的难度。但是,我们表明可以通过简单的方法克服可扩展性,例如使用聚类算法对网络进行分区。
translated by 谷歌翻译
面部特征跟踪是成像跳芭式(BCG)的关键组成部分,其中需要精确定量面部关键点的位移,以获得良好的心率估计。皮肤特征跟踪能够在帕金森病中基于视频的电机降解量化。传统的计算机视觉算法包括刻度不变特征变换(SIFT),加速强大的功能(冲浪)和LUCAS-KANADE方法(LK)。这些长期代表了最先进的效率和准确性,但是当存在常见的变形时,如图所示,如图所示,如此。在过去的五年中,深度卷积神经网络对大多数计算机视觉任务的传统方法表现优于传统的传统方法。我们提出了一种用于特征跟踪的管道,其应用卷积堆积的AutoEncoder,以将图像中最相似的裁剪标识到包含感兴趣的特征的参考裁剪。 AutoEncoder学会将图像作物代表到特定于对象类别的深度特征编码。我们在面部图像上培训AutoEncoder,并验证其在手动标记的脸部和手视频中通常验证其跟踪皮肤功能的能力。独特的皮肤特征(痣)的跟踪误差是如此之小,因为我们不能排除他们基于$ \ chi ^ 2 $ -test的手动标签。对于0.6-4.2像素的平均误差,我们的方法在所有情况下都表现出了其他方法。更重要的是,我们的方法是唯一一个不分歧的方法。我们得出的结论是,我们的方法为特征跟踪,特征匹配和图像配准比传统算法创建更好的特征描述符。
translated by 谷歌翻译
精心设计的艺术品的产生往往非常耗时,并假设人类画家的一部分高度熟练程度。为了促进人类的绘画过程,已经在教学机器上进行了大量的研究,如何“像人类涂漆”,然后使用培训的代理作为人类用户的绘画辅助工具。然而,在该方向上的当前研究通常依赖于基于渐进的基于网格的划分策略,其中代理将整个图像分成连续更精细的网格,然后继续并行绘制它们中的每一个。这不可避免地导致人工绘画序列,这些绘画序列不容易理解人类用户。为了解决这个问题,我们提出了一种新颖的绘画方法,该方法学会在展出更为人类的绘画风格的同时生成输出画布。建议的绘画管道Intelli-Paint由1)逐步分层策略组成,允许代理首先绘制自然背景场景表示,然后以渐进式方式添加每个前景物体。 2)我们还介绍了一种新的顺序笔记本图引导策略,它可以帮助绘画代理以语义感知方式将其关注转移到不同图像区域之间。 3)最后,我们提出了一种技巧正规化策略,其允许在所需的笔触的总数减少约60-80%,而没有产生的帆布质量的任何可感知差异。通过定量和定性结果,我们表明所产生的代理商不仅在输出画布生成的增强效率上表现出更加自然的绘画风格,这将更好地帮助人类用户通过数字艺术作品表达他们的想法。
translated by 谷歌翻译
客户服务Chatbots是对话系统,旨在为客户提供有关不同公司提供的产品/服务的信息。特别地,意图识别是自然语言低估Chatbot系统的能力的核心组件之一。在聊天训练识别的不同意图中,他们有一组是通用的任何客户服务Chatbot。普遍意图可以包括称呼,将对话交给人类代理人,告别。识别这些普遍意图的系统将非常有助于优化特定客户服务聊天训练过程。我们提出了一个普遍意图识别系统的发展,该系统受过培训,以识别28个不同的聊天跳闸中常见的11个意图组。拟议的系统考虑了最先进的单词嵌入模型,例如Word2VEC和BERT,基于卷积和经常性神经网络的深层分类器。所提出的模型能够区分这些普遍意图,均衡精度高达80.4 \%。此外,所提出的系统同样准确地识别短期和长文本请求中表达的意图。同时,错误分类错误通常发生在具有非常相似的语义领域,例如告别和正面评论之间。建议的系统将非常有帮助优化客户服务Chatbot的培训过程,因为我们的系统已经可用并检测到一些意图。与此同时,拟议的方法将是一个合适的基础模型,通过应用转移学习策略培训更具体的聊天措施。
translated by 谷歌翻译
命名实体识别(ner)是一种信息提取技术,其旨在在文档中定位和分类为预定义类别的文档中的命名实体(例如,组织,位置,......)。正确识别这些短语在简化信息访问方面发挥着重要作用。但是,它仍然是一项艰巨的任务,因为命名实体(NES)具有多种形式,它们是上下文相关的。虽然上下文可以通过上下文特征来表示,但是这些模型通常误解了全局关系。在本文中,我们提出了从图形卷积网络(GCN)的XLNET和全局特征的上下文特征的组合来增强NER性能。在一个广泛使用的数据集,2003年的实验,展示了我们战略的好处,结果与现有技术(SOTA)竞争。
translated by 谷歌翻译
我们介绍了ADAVIT,一种可自适应地调整视觉变压器(VIT)推理成本的方法,用于不同复杂性的图像。 Adavit通过自动减少在网络中处理的视觉变压器中的令牌数量作为推理进行的令牌的数量来实现这一目标。我们为此任务进行重新格式化自适应计算时间(ACT),扩展为丢弃冗余空间令牌。视觉变换器的吸引力架构属性使我们的自适应令牌减少机制能够加速推理而不修改网络架构或推理硬件。我们展示了ADAVIT不需要额外的参数或子网来停止,因为我们基于自适应停止在原始网络参数上的学习。我们进一步引入了与现有行为方法相比稳定培训的分布先前正则化。在图像分类任务(ImageNet1K)上,我们表明我们提出的Adavit在过滤信息丰富的空间特征和削减整体计算上产生了高效率。所提出的方法将Deit-Tiny的吞吐量提高了62%并除去了38%,只有0.3%的精度下降,优于大边距。
translated by 谷歌翻译