域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
在过去的十年中,在杂交无人驾驶空中水下车辆的研究中努力,机器人可以轻松飞行和潜入水中的机械适应水平。然而,大多数文献集中在物理设计,建筑物的实际问题上,最近,低水平的控制策略。在高级情报的背景下,如运动规划和与现实世界的互动的情况下已经完成。因此,我们在本文中提出了一种轨迹规划方法,允许避免避免未知的障碍和空中媒体之间的平滑过渡。我们的方法基于经典迅速探索随机树的变体,其主要优点是处理障碍,复杂的非线性动力学,模型不确定性和外部干扰的能力。该方法使用\ Hydrone的动态模型,提出具有高水下性能的混合动力车辆,但我们认为它可以很容易地推广到其他类型的空中/水生平台。在实验部分中,我们在充满障碍物的环境中显示了模拟结果,其中机器人被命令执行不同的媒体运动,展示了我们的策略的适用性。
translated by 谷歌翻译
我们描述了Countersynth,一种诱导标签驱动的扩散变形的条件生成模型,体积脑图像中的标签驱动的生物合理的变化。该模型旨在综合用于下游判别判断性建模任务的反事实训练数据,其中保真度受数据不平衡,分布不稳定性,混淆或缺点的限制,并且在不同的群体中表现出不公平的性能。专注于人口统计属性,我们评估了具有基于体素的形态学,分类和回归条件属性的合成反事实的质量,以及FR \'{e} CHET开始距离。在设计的人口统计不平衡和混淆背景下检查下游歧视性能,我们使用英国Biobank磁共振成像数据来基准测试对这些问题的当前解决方案的增强。我们实现了最先进的改进,无论是整体忠诚和股权。 CounterSynth的源代码可在线获取。
translated by 谷歌翻译
使用虚拟机或虚拟机监视器(VMM)的虚拟机(VM)的服务器虚拟化是云计算技术的重要组成部分,提供基础架构 - AS-Service(IAAS)。 VMM中的故障或异常可以传播到托管的VMS上,并最终影响在这些VM上运行的应用程序的可用性和可靠性。因此,识别并最终识别它非常重要。然而,由于用户无法访问VMM,异常VMM检测是云环境中的挑战。本文通过引入名为IAD的新机器学习的算法,解决了基于云的环境中的异常VMM检测在基于云的环境中的这种挑战。该算法仅使用VM的资源利用率数据托管在那些VMMS上进行异常VMMS检测。在包括合成和实际的四个数据集上测试了发达的算法的准确性,并与四个其他流行算法进行比较,这也可以用于所描述的问题。结果发现,所提出的IAD算法的平均F1分数为83.7%,在四个数据集上平均平均,并且也优于其他算法,平均f1分数为11 \%。
translated by 谷歌翻译
组合多站点数据可以加强和揭示趋势,但是是由可以偏向数据的特定特定协变量的影响,因此任何下游分析都会受到任何可能的任务。 HOC后期多站点校正方法存在但具有强烈的假设,通常不会在现实世界中持有。算法应该以可以解释特定于站点的效果的方式设计,例如从序列参数选择中出现的那些,并且在泛型失败的情况下,应该能够通过明确的不确定性建模来识别这种失败。该工作正文展示了这种算法,这可以在分割任务的背景下对收购物理学变得强大,同时建模不确定性。我们展示我们的方法不仅概括为完全熔断数据集,保留了分割质量,但同时也会考虑特定于站点的序列选择,这也允许它作为统一工具执行。
translated by 谷歌翻译
能够充分处理和组合来自不同地点的数据在神经影像中至关重要,但由于现场,序列和获取参数依赖性偏差,困难。因此,重要的是设计算法,这不仅是对不同对比度的图像的稳健,而且能够概括到未经调查的不确定度。在本文中,我们展示了物理信息,不确定性感知,分割网络的效果,该分割网络采用增强时间MR仿真和同质批量特征分层以实现采集不变性。我们表明所提出的方法还准确地推断出分布外序列样品,在这些方面提供良好的校准体积界限。我们展示了通过基于不确定性的体积验证支持的变化系数的显着改进。
translated by 谷歌翻译
开发了一种能够处理NMR图像的算法,用于使用机器学习技术来分析以检测脑肿瘤的存在。
translated by 谷歌翻译
布局分析(LA)阶段对光学音乐识别(OMR)系统的正确性能至关重要。它标识了感兴趣的区域,例如Staves或歌词,然后必须处理,以便转录它们的内容。尽管存在基于深度学习的现代方法,但在不同模型的精度,它们对不同领域的概括或更重要的是,它们尚未开展对OMR的详尽研究,或者更重要的是,它们对后续阶段的影响管道。这项工作侧重于通过对不同神经结构,音乐文档类型和评估方案的实验研究填补文献中的这种差距。培训数据的需求也导致了一种新的半合成数据生成技术的提议,这使得LA方法在真实情况下能够有效适用性。我们的结果表明:(i)该模型的选择及其性能对于整个转录过程至关重要; (ii)(ii)常用于评估LA阶段的指标并不总是与OMR系统的最终性能相关,并且(iii)所提出的数据生成技术使最先进的结果能够以有限的限制实现标记数据集。
translated by 谷歌翻译
空气污染监测平台在预防和减轻污染影响方面发挥着非常重要的作用。绘图信号处理领域的最新进展使得可以使用图表描述和分析空气污染监测网络。其中一个主要应用是使用传感器的子集重新重建图表中的测量信号。使用来自传感器邻居的信息重建信号可以有助于提高网络数据的质量,示例是用相关的相邻节点的缺失数据填充,或者校正与更准确的相邻传感器的漂移传感器。本文比较了各种类型的图形信号重建方法应用于西班牙空气污染参考站的真实数据集。所考虑的方法是拉普拉斯插值,曲线​​图信号处理低通基的曲线曲线信号重建,以及基于内核的曲线图信号重建,并在测量O3,NO2和PM10的实际空气污染数据集上进行比较。示出了重建污染物信号的方法的能力,以及该重建的计算成本。结果表明了基于基于内核的曲线图信号重建的方法的优越性,以及具有大量低成本传感器的空气污染监测网络中的方法的难度。但是,我们表明可以通过简单的方法克服可扩展性,例如使用聚类算法对网络进行分区。
translated by 谷歌翻译
由于深度学习的进步和数据集的增加,自动许可证板识别(ALPR)系统对来自多个区域的牌照(LPS)的表现显着。对深度ALPR系统的评估通常在每个数据集内完成;因此,如果这种结果是泛化能力的可靠指标,则是可疑的。在本文中,我们提出了一种传统分配的与休假 - 单数据集实验设置,以统一地评估12个光学字符识别(OCR)模型的交叉数据集泛化,其在九个公共数据集上应用于LP识别,具有良好的品种在若干方面(例如,获取设置,图像分辨率和LP布局)。我们还介绍了一个用于端到端ALPR的公共数据集,这是第一个包含带有Mercosur LP的车辆的图像和摩托车图像数量最多的图像。实验结果揭示了传统分离协议的局限性,用于评估ALPR上下文中的方法,因为在训练和测试休假时,大多数数据集在大多数数据集中的性能显着下降。
translated by 谷歌翻译